传统目标跟踪——光流法

简单来说,光流就是瞬时速度,在时间间隔很小时,也等同于目标的位移,光流场是灰度图像的二维矢量场,它反映了图像上像素的变化趋势,可看成是带有灰度的像素点在图像平面上运动而产生的瞬时速度场,它包含的信息即是各像素点的瞬时运动速度矢量信息,既可以表现为物体运动的运动方向也可表现为物体运动的速率。为了避免大

MobileNet系列论文

传统CNN,内存需求量大、运算量大,导致无法在移动设备以及嵌入式设备上运行。MobileNet是Google团队在2017年提出,专注于移动端或者嵌入式设备中的轻量级CNN网络。相比于传统的CNN,在准确率下幅度下降的前提下大大减少了模型参数与运算量。(相比于VGG16准确率下降了0.9%,但模型参

池化(Pooling)

在图像处理中,由于图像中存在较多冗余信息,可用某一区域子块的统计信息(如最大值或均值等)来刻画该区域中所有像素点呈现的空间分布模式,以替代区域子块中所有像素点取值,这就是卷积神经网络中池化(pooling)操作。池化操作对卷积结果特征图进行约减,实现了下采样,同时保留了特征图中主要信息。比如:当识别

【深度学习】损失函数详解

损失函数

grad-cam实现可视化|mmselfsup自监督|保姆级教学

Grad-CAM是使用任何目标概念的梯度(比如分类类别中的某一类的logits,甚至是caption任务中的输出),流入最后的卷积层,生成一个粗略的定位图来突出显示图像中用于预测的重要区域。

Deep SDF 、NeuS学习

Deep SDF NeuS学习

语义分割中图片和mask的可视化

其实取标题一直以来都是一件麻烦的事,但是如果你要看下去,我想你得有一点语义分割的见解。用平常的语言描述该问题就是:语义分割出我们感兴趣的目标物,然后输出该目标物的轮廓点。做语义分割其实有很多种方法,你可以用不同的模型去train你的dataset,但是刚接触语义分割的朋友们可能会说,我该怎么分割出我

最优模型选择的准则:AIC、BIC准则

最优模型选择的标准

【深度学习模型】ChatGPT原理简述

OpenAI推出人工智能聊天模型ChatGPT,很快引起百万用户注册使用,公众号和热搜不断,迅速火出圈,甚至引起各大公司在聊天对话机器人上的军备竞赛。

机器学习论文源代码浅读:Autoformer

原本想要和之前一样写作“代码复现”,然而由于本人一开始对于Autoformer能力理解有限,参考了一定的论文中的源代码,写着写着就发现自己的代码是“加了注释版本”的源代码,故而只能是源代码的浅读,而非复现。

YOLOv5图像分割--SegmentationModel类代码详解

SegmentationModel类DetectionModel类推理阶段DetectionModel--forward()BaseModel--forward() Segment类Detect--forward 定义model将会调用models/yolo.py中的类SegmentationMo

【Pytorch深度学习50篇】·······第六篇:【常见损失函数篇】-----BCELoss及其变种

新年新气象,兄弟们新年快乐。撒花!!!之前我们的项目已经讲过了常见的4种深度学习任务(当然还有一些没有接触到的,例如GAN和今年大红的Transformer),今天这个blog我们就来谈谈一谈常见的损失函数。损失函数的更新也是非常的快,各位大佬的想法也是层出不穷,我们站在巨人的肩膀上,就可以看的更远

【深度理解】语义分割中常用的评价指标含义GA、OA、mAcc、IoU、mIoU

GlobalAccuracy,OverallAccuracy表示全局的准确性,既不考虑类别,仅考虑所有样本的分类好坏。可见其对角线上的数字(8,15,24)均为正确预测,其它为错误预测。且每一列的总和为该类的总数目。(某类的真实样本∩预测为该类的样本)/(某类的真实样本∪预测为该类的样本)即Mean

Ubantu 系统cuda升级到指定版本

Ubantu 系统cuda升级到指定版本

chatGPT原理详解

chatGPT原理及相关技术详解

GAN的训练技巧:炼丹师养成计划 ——生成式对抗网络训练、调参和改进

GAN最重要的就是找到D与G之间的纳什均衡,但是在实际中会发现GAN的训练不稳定,训练方法不佳很容易出现模式崩溃等问题,本篇将记录一些训练技巧,不一定适合你的模型,也可能有疏漏和错误,供学习参考,欢迎指正和补充。

随笔记录:关于SE模块插入位置的总结

SE模块的插入位置探讨

基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)

基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)

官方自带YOLOv5的半自动标注方法

使用官方YOLOv5自带数据标注功能,半自动打标签,能一定程度减少打标签时间。