NLP 实战 (9) | CSDN topN指数月排行榜竞赛动画

开源一个 topn 词竞赛动画项目 topn_race:GitCode 仓库:https://gitcode.net/csdn/topn_race核心功能:输入:按月统计的topN词频数据输出:topN词频竞赛动画(可带音效)源码结构本项目基于开源项目:https://github.com/dexp

opencv&mediapipe 人脸检测+摄像头实时

文章目录单张人脸关键点检测摄像头实时关键点检测单张人脸关键点检测定义可视化图像函数导入三维人脸关键点检测模型导入可视化函数和可视化样式读取图像将图像模型输入,获取预测结果BGR转RGB将RGB图像输入模型,获取预测结果预测人人脸个数可视化人脸关键点检测效果绘制人来脸和重点区域轮廓线,返回annota

华为杯数学建模E题UWB精确定位一等奖算法思路

华为杯数学建模E题UWB精确定位一等奖算法思路

Python实验--手写五折交叉验证+调库实现SVM/RFC/KNN手写数字识别

通过手写五折交叉验证+调库,分别用SVM,KNN,RFC实现手写数字书别

Python实现极限学习机ELM【hpelm库】(内涵源代码)

机器学习之ELM极限学习机,开源Python代码!

Numpy科学计算库基础知识(Hello,world)

一、前言本人2020级本科生,坐标北京师范大学,主修人工智能,辅修教育学。在期末周来临之前萌在CSDN上发文章的想法,这样做的理由有两点,一方面可以在学习的同时归纳总结加深记忆,便于自己今后复习回顾;另一方面可以在CSDN这样的技术交流平台上留下自己的痕迹,记录AI人求学路上点滴的成长碎片。

5个很少被提到但能提高NLP工作效率的Python库

本篇文章将分享5个很棒但是却不被常被提及的Python库,这些库可以帮你解决各种自然语言处理(NLP)工作。

作业——机器学习教你预测商品销售额

(一)作业要求advertising.csv文件是某商品的广告推广费用(单位为元)和销售额数据(单位为千元),其中每行代表每一周的广告推广费用(包含微信、微博和其他类型三种广告费用)和销售额。若在未来的某两周,将各种广告投放金额按如下分配,请预测对应的商品销售额:(1)微信:100,微博:100,其

python在球面上随机生成均匀点最简单的方法

python在球面上随机生成均匀点最简单的方法

pytorch基础复习1.1——常用API

【写在前面】:此专栏为本人在系统复习pytorch基础时写下的笔记,复习内容与进度参考一位在B站讲深度学习的up主(deep_thoughts),此笔记旨在帮助小伙伴快速入门和复习pytorch相关知识,写得不好的地方多担待,可直接移步up主的视频学习。此专栏全程无盈利性质。up主(deep_tho

统计学习:决策树实现与梯度下降法(python实现, ID3算法)

一、ID3算法ID3算法的核心是在决策树各个结点上应用信息增益准则选择特征,递归的构建决策树。具体方法是:从根节点开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子节点;在对子结点递归的调用以上方法,构建决策树;直到所有特征的信息增益均很小或者没

Python将彩色图像转为灰度图像

Python的cv2库中自带彩色转灰度的方法,而且非常简单,代码就9行,核心代码就1行。大题思路就是先读取一张彩色图片,然后在窗口中显示出来,再然后就让cv2处理一下,转换成灰度图像,这时候它是个二维的灰度矩阵,所以,我们想保存得先将它从array转成image,最后在另一个窗口中显示出来,为了避免

【醍醐灌顶】Python编写http-server

???? 专注Golang,Python语言,云原生,人工智能领域得博主;???? 过去经历的意义在于引导你,而非定义你;???? 欢迎点赞 ???? 收藏 ⭐留言!

jupyter notebook 内核配置

我的 jupyter-bootbook 是在 ubuntu 下安装 anaconda 获得的,下面的命令在 Windows 下大部分可以运行,但略有差异。还是建议在 Linux 环境下做 AI 开发。添加内核创建一个新的虚拟环境,安装 python ipykernel(base) fxyang@dl

作为一只Python爬虫:如何破解滑动验证码

做爬虫总会遇到各种各样的反爬限制,反爬的第一道防线往往在登录就出现了,为了限制爬虫自动登录,各家使出了浑身解数,所谓道高一尺魔高一丈。今天分享个如何简单处理滑动图片的验证码的案例。类似这种拖动滑块移动到图片中缺口位置与之重合的登录验证在很多网站或者APP都比较常见,因为它对真实用户体验友好,容易识别

OpenCV-Python实战(18)——深度学习简介与入门示例(快来一起推开深度学习的大门吧)

深度学习已经成为机器学习中最受欢迎和发展最快的领域。自 2012 年深度学习性能超越机器学习等传统方法以来,深度学习架构开始快速应用于包括计算机视觉在内的众多领域。深度学习的常见应用包括语音识别、图像识别、自然语言处理、推荐系统等等。在本文中,首先介绍传统机器学习方法与深度学习间的差异,然后将介绍图

机器学习笔记:常用数据集之scikit-learn生成分类和聚类数据集

scikie-learn中用于生成数据集的接口函数统一以'make_'打头,可以生成以下类型的数据集:(1) 分类和聚类数据集; (2) 回归数据集; (3) 流形学习数据集;(4) 降维数据集。 作为本系列的第三篇,本文介绍分类和聚类数据集的生成用的9个接口函数。

从零实现深度学习框架——实现Tensor的反向传播

在常见运算的计算图中,我们了解了加减乘除等运算的计算图。本文通过代码实现加法和乘法的计算图来了解我们的`Tensor`自动反向传播计算梯度的模式。

计算 Python 代码的内存和模型显存消耗的小技巧

本篇文章我们将介绍两个 Python 库 memory_profiler和Pytorch-Memory-Utils,这两个库可以帮助我们了解内存和显存的消耗。

18 个 实用的Numpy 代码片段总结

在本文中,我整理了一些 NumPy 代码的片段,这些代码片段都是在日常开发中经常用到的。