深度学习模型理解-CNN-手写数据字代码

图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。非严格意义上来讲,下图中红框框起来的部分便可以理解为一个滤波器,即带着一组固定权重的神

OpenAi multi-agent 多智能体环境搭建

open-ai Multi-Agent多智能体深度强化学习环境搭建

GAM注意力机制

GAM解析,使用Pytorch实现GAM attention

transformers的近期工作成果综述

在本文中,对基于transformer 的工作成果做了一个简单的总结,将最新的transformer 研究成果(特别是在2021年和2022年发表的研究成果)进行详细的调研。

文字生成图片

PaddleHub旨在为开发者提供丰富的、高质量的、直接可用的预训练模型【模型种类丰富】: 涵盖大模型、CV、NLP、Audio、Video、工业应用主流六大品类的 360+ 预训练模型,全部开源下载,离线可运行【超低使用门槛】:无需深度学习背景、无需数据与训练过程,可快速使用AI模型【一键模型快速

Pytorch创建多任务学习模型

一般来说多任务学的模型架构非常简单:一个骨干网络作为特征的提取,然后针对不同的任务创建多个头。利用单一模型解决多个任务。

睿智的目标检测60——Pytorch搭建YoloV7目标检测平台

AB哥弄了个YoloV7,我觉得有必要跟进看看,它的concat结构还是第一次见,感觉有点意思。https://github.com/bubbliiiing/yolov7-pytorch1、主干部分:使用了创新的多分支堆叠结构进行特征提取,相比以前的Yolo,模型的跳连接结构更加的密集。使用了创新的

常用的20个计算机视觉开源数据集总结

本文总结了常用的开源计算机视觉数据集

YOLOv5、v7改进之二十八:ICLR 2022涨点神器——即插即用的动态卷积ODConv

作为当前先进的深度学习目标检测算法YOLOv5、v7系列算法,已经集合了大量的trick,但是在处理一些复杂背景问题的时候,还是容易出现错漏检的问题。此后的系列文章,将重点对YOLO系列算法的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己

10种常见的回归算法总结和介绍

线性回归是机器学习中最简单的算法,它可以通过不同的方式进行训练。 在本文中,我们将介绍以下回归算法:线性回归、Robust 回归、Ridge 回归、LASSO 回归、Elastic Net、多项式回归、多层感知机、随机森林回归和支持向量机。

CNN-运动鞋品牌识别

CNN-运动鞋识别

基于扩散模型的图像压缩:创建基于Stable Diffusion的有损压缩编解码器

Stable Diffusion是最近在图像生成领域大火的模型,在对他研究的时候我发现它可以作为非常强大的有损图像压缩编解码器。

【DL】第3章 使用词嵌入计算文本相似度

正如我们在上一步中看到的,与单词相关联的向量对单词的含义进行编码——彼此相似的单词具有彼此接近的向量。事实证明,词向量之间的差异也编码了词之间的差异,所以如果我们将“儿子”这个词的向量减去“女儿”这个词的向量,我们最终会得到一个差异,可以解释为“从男变女。此外,它可能是最著名的嵌入示例,而嵌入是深度

Pytoch优化器常用的两种学习率衰减策略:指数衰减策略、余弦退火策略(附测试代码)

Pytorch提供了多种学习率衰减策略,我在这里介绍常用的指数衰减策略和余弦退火策略,并分别介绍他们的代码实现。无论采用那种策略,在网络训练之间我们均需要进行以下两步工作:1)创建优化器Optimizer;2)为优化器绑定一个学习率控制器Scheduler;网络训练过程中,学习率不能过大,也不能过小

深度学习05——线性回归模型

传送门#写入数据集# 线性回归模型#计算损失函数(MSE均方误差)# 穷举法更新参数ww_list = [] #用于存放更新的参数wl_sum = 0 # 初始化,用于计算损失和l_sum += loss_val # 计算损失和print('MSE=', l_sum / 3) #求均方误差w_lis

目标检测YOLO系列算法的进化史

本文中将简单总结YOLO的发展历史,YOLO是计算机视觉领域中著名的模型之一

为什么不试试神奇的3407呢?

3407可能正是你所需要的!torch.manual seed(3407) is all you need!

安装GPU版本tensorflow、pytorch

如何让一个小白轻松安装深度学习框架?

Keras深度学习实战(26)——文档向量详解

本节中,我们首先介绍了文档向量概念提出的背景,然后介绍了文档向量的基本概念以及如何生成文档向量,并了解了构建文档向量的策略,最后使用 Keras 从零开始实现了文档向量生成模型,并使用航空公司的 Twitter 数据集训练得到了数据集的文档向量。