YOLO V5源码详解
首先读取图片以及标签路径,并将标签存入缓存,对单标签情况、特定类别、以及是否保持长方形等情况分别进行处理。如果需要进行mosaic 数据增强,首先找到中心点,将图片分别放置于四个位置,进行裁剪或者拼接以适应,并对labels进行调整。同时,对进行过mosaic数据增强过的图像,再进行copy_pas
BertTokenizer 使用方法
BertTokenizer 使用方法,BertTokenizer 函数详解,tokenizer使用方法
Transformer框架时间序列模型Informer内容与代码解读
Transformer框架时间序列模型Informer内容与代码解读。详细介绍概括了顶会论文AAAI‘21 Best Paper的核心内容。
注意力机制详解
注意力机制
DDPM代码详细解读(1):数据集准备、超参数设置、loss设计、关键参数计算
Diffusion Models专栏文章汇总:入门与实战前言:大部分DDPM相关的论文代码都是基于《Denoising Diffusion Probabilistic Models》和《Diffusion Models Beat GANs on Image Synthesis》贡献代码基础上小改动的
拉格朗日乘子法
是一种寻找多元函数在一组约束下的极值的方法。通过引入拉格朗日乘子,可将有 ddd 个变量与 kkk 个约束条件的最优化问题转化为具有 d+kd + kd+k 个变量的无约束优化问题求解。假如有方程 x2y=3x^2y=3x2y=3,它的图像如下(左一)所示。现在我们想求其上点与原点的最短距离(中图)
局部规划算法:DWA算法原理
DWA算法(dynamicwindowapproach)是移动机器人在运动模型下推算(v,w)对应的轨迹,确定速度采样空间或者说是动态窗口(三种限制);在速度空间(v,w)中采样多组速度,并模拟这些速度在一定时间内的运动轨迹,通过一个评价函数对这些轨迹打分,选取最优的轨迹来驱动机器人运动。...
Vision Transformer 论文 + 详解( ViT )
Vision Transformer 论文 + 详解
超详细!手把手带你轻松用 MMSegmentation 跑语义分割数据集
本文主要讲解了数据集相关的内容,包括目前学术界主流的语义分割数据集在 MMSegmentation中的实现,以及如何用 MMSegmentation 跑自己的数据集。希望可以帮助大家快速上手使用 MMSegmentation 代码库进行实验。.........
Apollo Planning决策规划算法代码详解 (22):决策规划算法最完整介绍
前言:后台已经写完了Apollo Planning决策规划算法的完整解析,一路从规划模块的入口OnLanePlanning,介绍到常见的规划器PublicRoadPlanner;接着介绍了在PublicRoadPlanner中如何通过类似有限状态机的ScenarioDispatch进行场景决策。之后
AI上推荐 之 多任务loss优化(自适应权重篇)
1. 写在前面在多任务学习中,往往会将多个相关的任务放在一起来学习。例如在推荐系统中,排序模型同时预估候选的点击率和浏览时间。相对于单任务学习,多任务学习有以下优势:多个任务共享一个模型,占用内存量减少;多个任务一次前向计算得出结果,推理速度增加;关联任务通过共享信息,相互补充,可以提升彼此的表现。
深度强化学习-DQN算法原理与代码
DQN算法是DeepMind团队提出的一种深度强化学习算法,在许多电动游戏中达到人类玩家甚至超越人类玩家的水准,本文就带领大家了解一下这个算法,论文的链接见下方。论文:https://www.nature.com/articles/nature14236.pdf代码:后续会将代码上传到Github上
【魔改YOLOv5-6.x(4)】结合EIoU、Alpha-IoU损失函数
文章目录前言EIoU论文简介加入YOLOv5Alpha-IoU论文简介加入YOLOv5References前言本文使用的YOLOv5版本为v6.1,对YOLOv5-6.x网络结构还不熟悉的同学,可以移步至:【YOLOv5-6.x】网络模型&源码解析想要尝试改进YOLOv5-6.1的同学,可以
经典CNN设计演变的关键总结:从VGGNet到EfficientNet
卷积神经网络设计史上的主要里程碑:模块化、多路径、因式分解、压缩、可扩展
GANs系列:DCGAN原理简介与基础GAN的区别对比
参考了DCGAN论文,对论文逐步解读,将论文精华部分进行了概括提取,包括原理、应用以及训练过程。在基础的生成式对抗神经网络的基础上,进一步介绍DCGAN深度卷积生成对抗神经网络。
Python 实现朴素贝叶斯代码演示
朴素贝叶斯可以细分为三种方法:分别是伯努利朴素贝叶斯、高斯朴素贝叶斯和多项式朴素贝叶斯。下文就这三种方法进行详细讲解和演示。目录一、伯努利朴素贝叶斯方法1.1 例子解答1.1.1 代码:1.1.2 结果:二、高斯朴素贝叶斯方法2.1 解题2.1.1 代码:2.1.2 结果:2.2 检查高斯朴素贝叶斯
翻译: 详细图解Transformer多头自注意力机制 Attention Is All You Need
它们是用于计算和思考注意力的抽象概念。一旦你继续阅读下面的注意力是如何计算的,你就会知道几乎所有你需要知道的关于每个向量所扮演的角色。计算self-attention的第二步是计算一个分数。假设我们正在计算本例中第一个单词“Thinking”的自注意力。我们需要根据这个词对输入句子的每个词进行评分。
图像风格迁移
风格迁移指的是两个不同域中图像的转换,具体来说就是提供一张风格图像,将任意一张图像转化为这个风格,并尽可能保留原图像的内容
世界坐标系、相机坐标系、图像坐标系、像素坐标系
四个坐标系都是什么?图像处理、立体视觉等等方向常常涉及到四个坐标系:世界坐标系、相机坐标系、图像坐标系、像素坐标系 构建世界坐标系只是为了更好的描述相机的位置在哪里,在双目视觉中一般将世界坐标系原点定在左相机或者右相机或者二者X轴方向的中点。接下来的重点,就是关于这几个坐标系的转换。
YOLOV5更换轻量级的backbone:mobilenetV2
如何更换YOLOV5的backbone