2022年深度学习在时间序列预测和分类中的研究进展综述
2022年时间序列预测中transformers衰落和时间序列嵌入方法的兴起,还有异常检测、分类也取得了进步,本文将尝试介绍一些在过去一年左右的时间里出现的更有前景和关键的论文
【通信原理】揭开傅里叶级数与傅里叶变换的神秘面纱
傅里叶变换和傅里叶级数是有史以来最伟大的数学发现之一。它们可以帮助我们将函数分解成其基本成分。它们揭示了任何数学函数的基本模块,但是傅里叶分析的公式对于连高数中sin2x的积分都不熟悉的工科白菜来说简直就是连多看它一样的勇气都没有,我想这就是为什么复杂的傅里叶分析成为大学中通信专业的疑难杂症的主要原
现在ChatGPT可以使用谷歌插件进行快速交互访问了!
现在ChatGPT可以使用谷歌插件进行快速交互访问了!
PyTorch安装与配置教程(2022.11)
PyTorch安装与配置教程(2022.11)
yolov5源码解析(9)--输出
本文章基于yolov5-6.2版本。主要讲解的是yolov5是怎么在最终的特征图上得出物体边框、置信度、物体分类的。
OpenCV之 BGR、GRAY、HSV色彩空间&色彩通道专题 【Open_CV系列(三)】
OpenCV之色彩空间与通道 文章目录 1.色彩空间 1.1 BGR色彩空间 1.2 GRAY色彩空间 1.3 HSV色彩空间 1.4 空间转换 1.4.1 BGR 转 GRAY 1.4.2 BGR 转 HSV 2. 色彩通道 2.1 色彩通道的拆分 2.1.1 cv2.split() 拆分BGR通
利用opencv带你玩转人脸识别-下篇(人脸录入,数据训练,人脸识别小案例快速入门)
🐚作者简介:苏凉(专注于网络爬虫,数据分析)🐳博客主页:苏凉.py的博客🌐系列专栏:python-opencv快速入门👑名言警句:海阔凭鱼跃,天高任鸟飞。📰要是觉得博主文章写的不错的话,还望大家三连支持一下呀!!!👉关注✨点赞👍收藏📂文章目录前言人脸信息录入保存(动图演示)数据训练1
常用的优化器合集
总结了常用的优化器(SGD、Adagrad、Adadelta、RMSprop、Adam、Adamax、Nadam等等。),其中包括梯度下降法、动量优化法和自适应学习率优化算法三种,分别从原理、公式、优缺点以及pytorch及tensorflow2的官方代码展示这几个方面进行演示,最后可视化对比了各个
matlab图像处理
matlab图像处理,边缘检测、线检测、旋转、缩放、二值化、灰度、扩展、读取,规定化直方图,归一化直方图,累积直方图,均衡化
联邦学习 (FL) 中常见的3种模型聚合方法的 Tensorflow 示例
联合学习 (FL) 是一种出色的 ML 方法,它使多个设备(例如物联网 (IoT) 设备)或计算机能够在模型训练完成时进行协作,而无需共享它们的数据。
基于卷积神经网络(cnn)的手写数字识别(PyTorch)
手写数字识别应用广泛,对其研究有重要价值。在众多算法中,卷积神经网络在手写数字识别上表现突出,而且在实现上诸多优点。使用卷积神经网络来处理手写数字是一个很好的选择。pytorch在算法实现上有着简洁,优雅等特点。因此采用卷积神经网络算法和pytorch框架来实现手写数字识别。
Diffusion 和Stable Diffusion的数学和工作原理详细解释
扩散模型的兴起可以被视为人工智能生成艺术领域最近取得突破的主要因素。而稳定扩散模型的发展使得我们可以通过一个文本提示轻松地创建美妙的艺术插图。所以在本文中,我将解释它们是如何工作的。
【生成模型】DDPM概率扩散模型(原理+代码)
DDPM即 Denoising Diffusion Probabilistic Model概率扩散模型,原理+代码解析
ChatGPT-最强AI模型!ChatGPT国内使用教程 ChatGPT注册
最近想必大家也听说过ChatGPT,从他的名字中chat也可见一斑,它是一个以对话方式进行交互的人工智能模型。由OpenAI开发,它能够根据用户输入的文本内容,自动生成新的文本内容。它的名称来源于它所使用的技术—— GPT-3 架构,即生成式语言模型的第 3 代。目前,用户只需进行注册,就可开始与
数学建模国赛/美赛常见赛题类型及建模方案(纯干货)
该文章主要用于让大家了解数学建模的基本题目类型,也可做比赛开始时模型选择的依据。
【论文导读】 - 关于联邦图神经网络的3篇文章
图神经网络( GNNs )凭借其强大的处理实际应用中广泛存在的图数据的能力,受到了广泛的研究关注。然而,随着社会越来越关注数据隐私,GNNs面临着适应这种新常态的需要。这导致了近年来联邦图神经网络( FedGNNs )研究的快速发展。虽然前景广阔,但这一跨学科领域感兴趣的研究者来说是极具挑战性的。对
Tensorflow车牌识别完整项目(含完整源代码及训练集)
基于TensorFlow的车牌识别系统设计与实现,运用tensorflow和OpenCV的相关技术,实现车牌的定位、车牌的二值化、车牌去噪增强、图片的分割,模型的训练和车牌的识别等
西瓜书习题 - 10.机器学习初步考试
西瓜书前9章内容考试题目
OpenAI是什么?
在未来,人工智能将是一个巨大的行业。OpenAI正致力于创造一个生态系统,该系统能够使任何人都可以使用、分享和扩展其 AI技能。它为用户提供了一种新的方式,让任何人都可以学习新技术并且在这个世界上变得更好。
TensorFlow和PyTorch的实际应用比较
TensorFlow和PyTorch是两个最受欢迎的开源深度学习框架,本文与其他文章的特性的对比不同,我们将以实际应用出发,从性能、可伸缩性和其他高级特性方面比较TensorFlow和PyTorch。