【机器学习】机器学习与人工智能融合新篇章:自适应智能代理在多元化复杂环境中的创新应用与演进趋势
通过深入探索机器学习与人工智能的融合,我们不难发现自适应智能代理在多元化复杂环境中展现出了强大的创新应用潜力。这一领域的研究成果已经证实了智能代理能够根据环境变化实时调整行为策略,并通过学习持续优化决策过程,从而在各个领域实现更高效、更精准的决策与行动。这些成果不仅为机器学习与人工智能的进一步发展奠
开源模型应用落地-LangChain高阶-Tools工具-Multi-Agent(五)
基于Multi-Agent进一步串联多个agents,通过多个 Agent 的协同合作,高效完成复杂任务。
【YOLO系列】YOLO v5(网络结构图+代码)
YOLO v5提供了五个不同大小的预训练模型,分别是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l和YOLOv5x。这五个模型的网络架构一样,不同的是每层通道数和宽度不一样。
【深度学习】构建无与伦比的深度学习环境:在CentOS上实现GPU资源管理容器的终极指南
【深度学习】构建无与伦比的深度学习环境:在CentOS上实现GPU资源管理容器的终极指南这篇博文将深入探讨在 CentOS 操作系统上创建高度优化的深度学习环境的完整过程。我们将从零开始,逐步指导读者完成配置,并重点介绍如何有效地管理 GPU 资源,以及如何运用容器技术来提高环境的灵活性和可维护性。
MambaOut:状态空间模型并不适合图像的分类任务
该论文探讨了Mamba架构(包含状态空间模型SSM)是否有必要用于视觉任务,如图像分类、目标检测和语义分割。通过实验证实了了Mamba在视觉识别任务中的效果,认为其不如传统的卷积和注意力模型。
整合LlamaIndex与LangChain构建高级的查询处理系统
本篇文章将介绍如何将LlamaIndex和LangChain整合使用,创建一个既可扩展又可定制的代理RAG(Retrieval-Augmented Generation)应用程序,利用两种技术的强大功能,开发出能够处理复杂查询并提供精准答案的高效应用程序。
深入解析xLSTM:LSTM架构的演进及PyTorch代码实现详解
xLSTM的新闻大家可能前几天都已经看过了,原作者提出更强的xLSTM,可以将LSTM扩展到数十亿参数规模,我们今天就来将其与原始的lstm进行一个详细的对比,然后再使用Pytorch实现一个简单的xLSTM。
DeepSparse: 通过剪枝和稀疏预训练,在不损失精度的情况下减少70%的模型大小,提升三倍速度
这篇论文提出了一种高稀疏性基础大型语言模型(LLMs)的新方法,通过有效的预训练和部署,实现了模型在保持高准确度的同时,显著提升了处理速度。
扩散模型的多元化应用:药物发现、文本生成、时间序列预测等
今天我们就来研究一下扩散模型的多元化应用。
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍的主要流程是我们训练图神经网络的基本流程,尤其是前期的数据处理和加载,通过扩展本文的基本流程可以应对几乎所有图神经网络问题。
ATFNet:长时间序列预测的自适应时频集成网络
ATFNet是一个深度学习模型,它结合了时间域和频域模块来捕获时间序列数据中的依赖关系。这是4月发布在arxiv上的论文,还包含了源代码。
Transformers 加速的一些常用技巧
我们今天来总结以下一些常用的加速策略
You Only Cache Once:YOCO 基于Decoder-Decoder 的一个新的大语言模型架构
这是微软再5月刚刚发布的一篇论文提出了一种解码器-解码器架构YOCO,因为只缓存一次KV对,所以可以大量的节省内存。
图机器学习入门:基本概念介绍
本篇文章将从基础开始介绍什么是图,我们如何描述和表示它们,以及它们的属性是什么。
论文推荐:用多词元预测法提高模型效率与速度
作者们提出了一种创新的多词元预测方法,该方法在提高大型语言模型(LLMs)的样本效率和推理速度方面展示了显著优势。
号称能打败MLP的KAN到底行不行?数学核心原理全面解析
这篇文章将涉及大量的数学知识,主要介绍KAN背后的数学原理。
循环编码:时间序列中周期性特征的一种常用编码方式
在深度学习或神经网络中,"循环编码"(Cyclical Encoding)是一种编码技术,其特点是能够捕捉输入或特征中的周期性或循环模式。
LSTM时间序列预测中的一个常见错误以及如何修正
当使用LSTM进行时间序列预测时,人们容易陷入一个常见的陷阱。
LLM2Vec介绍和将Llama 3转换为嵌入模型代码示例
通过LLM2Vec,我们可以使用LLM作为文本嵌入模型。但是简单地从llm中提取的嵌入模型往往表现不如常规嵌入模型
BiTCN:基于卷积网络的多元时间序列预测
在本文中,我们将详细介绍了BiTCN,提出的模型。通过利用两个时间卷积网络(TCN),该模型可以编码过去和未来的协变量,同时保持计算效率。