使用Python和GloVe词嵌入模型提取新闻和文章的文本摘要
文章摘要是一个简短的段落,其中包含要点,并以文章本身使用的词语来表达。通常,我们仅提取那些我们认为最重要的要
使用Python和GloVe词嵌入模型提取新闻和文章的文本摘要
文章摘要是一个简短的段落,其中包含要点,并以文章本身使用的词语来表达。通常,我们仅提取那些我们认为最重要的要
机器学习中的数学:为什么对数如此重要
最小化某些参数的损失函数。你需要最小化损失函数的参数,一个函数和该函数的对数函数共同之处就是相同的参数可以最小化损失函数,这就是对数可以帮助我们简化机器学习算法的关键
Mask R-CNN上手指南:对象检测和分割实现无人机的检测
目标检测是一种计算机视觉技术,用于识别和定位图像中的目标。有很多检测算法存在,这里是对Mask R-CNN的一个很好的总结。
推荐系统中的相似度度量
您是否曾经想过Netflix是如何向您推荐您感兴趣的电影?或者亚马逊如何向您推荐难以抵制购买的产品?这些网站已经弄清了您喜欢看或买的东西。他们在后台运行一段代码,该代码可以在线收集有关用户行为的数据,并预测该用户对特定内容或产品的喜好。
OpenAI 开源新的深层神经网络神经元可视化库 Microscope和 Lucid
这一新的工具可以可视化每一层神经元对于输入信号的理解
在Python中使用qiskit包进行量子计算机编程
一个普遍的误解是,量子计算机尚未准备好进行市场应用,并且该技术还需要很多年才能使用。在本文中,我们将介绍对量
Kaggle M5 Forecasting:传统预测方法与机器学习预测方法对比
M5 Forecasting是最近比较火爆的一个Kaggle 预测比赛,我们使用他的数据集来对传统预测方法与机器学习预测方法进行一下对比
人工智能算命:使用自然语言处理预测人格类型
写一篇文章,我就能认出你是谁
利用流行病学数据预测COVID-19对航空业和医疗健康产业的影响
截至2020年4月,在COVID-19爆发期间,航空业已经请求了超过500亿美元的政府援助。
NLP中的预处理:使用Python进行文本归一化
随着我们对NLP的深入研究,越来越多的人意识到NLP并不像人们想象的那样具有普遍性。因此,不应将本文归一化的步骤列表作为硬性规则,而应将其作为对某些文章进行文本归一化的准则。
新的换脸模型FaceShifter论文的简单而完整的解释
如今,深度学习可以在图像合成和处理领域产生惊人的效果。我们已经看到了这样一些例子:使想象中的人产生幻觉的网站
5分钟了解神经网络激活函数
5分钟了解神经网络激活函数,改善模型学习模式的能力,从而实现了特征检测过程的自动化
概率统计中最重要的概念:概率统计与马尔可夫链的理解
每个数据科学家一旦开始研究统计模型,就会遇到马尔可夫链和马尔可夫过程这两个术语。本文将以一种易于理解的方式解释马尔可夫过程的基本概念。
ML 模型不等于“黑盒”:explainable AI 可解释的人工智能
可解释的人工智能(explainable AI) 是机器学习领域热门话题之一。机器学习模型通常被认为是“黑盒
在Python中进行探索式数据分析(EDA)
探索性数据分析(Exploratory Data Analysis ,EDA)是对数据进行分析并得出规律的一种数据分析方法。它是一个数据试图讲述的故事。EDA是一种利用各种工具和图形技术(如柱状图、直方图等)分析数据的方法。
使用Python可视化并分析数据 大型流行病如何影响金融市场
COVID19将如何影响金融市场,股市将下跌多少,何时结束以及如何结束。在本文中,我们将分析并借鉴过去的流行病信息来回答这些问题并对未来市场进行预测。
TensorFlow还是PyTorch?哪一个才更适合编写深度神经网络?
编程实现神经网络的最佳框架是什么?TensorFlow还是PyTorch?我的回答是:别担心,你从哪一个入门,你选择哪一个并不重要,重要的是自己动手实践!
Pytorch贝叶斯深度学习库BLiTZ实现LSTM预测时序数据
本文将主要讲述如何使用BLiTZ(PyTorch贝叶斯深度学习库)来建立贝叶斯LSTM模型,以及如何在其上使用序列数据进行训练与推理。
为什么LSTM看起来那么复杂,以及如何避免时序数据的处理差异和混乱
LSTM(long short term memory,长短期记忆网络)是预测时间序列最常用的神经网络模型之一。但是这种神经网络模型相当复杂,需要特定的结构、数据前期处理等操作。