BN,LN,IN,GN都是什么?不同归一化方法的比较
批归一化(BN)已经成为许多先进深度学习模型的重要组成部分,特别是在计算机视觉领域。
为什么朴素贝叶斯定理会被叫做朴素的?
朴素贝叶斯算法是一种基于著名贝叶斯定理的分类算法。那么让我们先了解一下Bayes定理是怎么说的,并为朴素贝叶
熵、交叉熵和KL散度的基本概念和交叉熵损失函数的通俗介绍
交叉熵(也称为对数损失)是分类问题中最常用的损失函数之一。
为什么在线性模型中相互作用的变量要相乘
在这篇文章中,我将解释为什么当建立一个线性模型,我们添加一个x₁₂术语如果我们认为变量x₁和x₂互动和添加交
降维算法:主成分分析 VS 自动编码器
降维是一种减少特征空间维度以获得稳定的、统计上可靠的机器学习模型的技术。降维主要有两种途径:特征选择和特征变换。
使用PyTorch从理论到实践理解变分自编码器VAE
变分自动编码器(Variational Auto Encoders,VAE)是种隐藏变量模型[1,2]。该模
手推公式:LSTM单元梯度的详细的数学推导
长短期记忆是复杂和先进的神经网络结构的重要组成部分。本文的主要思想是解释其背后的数学原理
Focal Loss详解以及为什么能够提高处理不平衡数据分类的表现
Focal Loss详解以及为什么能够提高处理不平衡数据分类的表现
深度学习中的模型修剪
本文讨论了深度学习环境中的修剪技术。本在本文中,我们将介绍深度学习背景下的模型修剪机制。
自注意力机制(Self-Attention)的基本知识
Transformers是机器学习(ML)中一个令人兴奋的(相对)新的部分,但是在理解它们之前,有很多概念需要分解
使用TensorBoard进行超参数优化
在本文中,我们将介绍超参数优化,然后使用TensorBoard显示超参数优化的结果。
Meal Kit 的时间序列数据预测实践
本文的目的是基于历史数据,通过机器学习的方法实现对于每周需求的预测。主要目标在于开发一个模型用于减少配送损失
在tensorflow2.2中使用Keras自定义模型的指标度量
使用Keras和tensorflow2.2可以无缝地为深度神经网络训练添加复杂的指标
在没有技术术语的情况下介绍Adaptive、GBDT、XGboosting等提升算法的原理简介
这篇文章将不使用任何的术语介绍每个提升算法如何决定每棵树的票数。通过理解这些算法是如何工作的,我们将了解什么
直观理解并使用Tensorflow实现Seq2Seq模型的注意机制
本文通过采用带注意机制的序列序列结构进行英印地语神经机器翻译,详细介绍注意力机制的概念
Beam Search、GREEDY DECODER、SAMPLING DECODER等解码器工作原理可视化
图像标注的任务让我们可以构建和训练一个为任何给定图像生成字幕的神经网络。在设计时使用了解码器的来完成文字的生成。
使用PyTorch实现鸟类音频检测卷积网络模型
以及为什么鸟类的声音检测对我们环境的未来如此重要介绍你听说过自动语音识别,你听说过音乐标签和生成,但是你听说
机器学习常见的损失函数以及何时使用它们
每一个机器学习工程师都应该知道机器学习中这些常见的损失函数以及何时使用它们。
进行图像增广(数据扩充)的15种功能总结和Python代码实现
python代码可以自己扩充图像数据集。多图慎入!!!
深入卷积神经网络:高级卷积层原理和计算的可视化
在深度计算机视觉领域中,有几种类型的卷积层与我们经常使用的原始卷积层不同。在计算机视觉的深度学习研究方面,许多流行的高级卷积神经网络实现都使用了这些层。