源大模型的快速部署与高效推理——GGUF格式模型介绍与使用教程

源2.0 是浪潮信息发布的新一代基础语言大模型。我们开源了全部的3个模型源2.0-102B,源2.0-51B和源2.0-2B。并且我们提供了预训练,微调,推理服务的相关脚本,以供研发人员做进一步的开发。源2.0是在源1.0的基础上,利用更多样的高质量预训练数据和指令微调数据集,令模型在语义、数学、推

大模型日报|11 篇必读的大模型论文

大模型日报|11 篇必读的大模型论文

CVPR 2024最佳论文分享:Mip-Splatting: 无混叠3D高斯溅射

本文介绍了一篇获得CVPR2024最佳论文提名的论文。该论文提出了一种名为Mip-Splatting的无混叠三维高斯溅射方法,结合多级混合技术和2D、3D Mip滤波器,显著减少了混叠伪影。该方法在多尺度数据训练和测试中表现优越,提升了渲染质量和计算效率。

深度学习的前沿主题:GANs、自监督学习和Transformer模型

深度学习的前沿技术包括生成对抗网络(GANs)、自监督学习和Transformer模型。GANs通过生成器和判别器的对抗训练生成高质量数据,自监督学习利用数据的内在结构在无标签数据上学习有效特征,Transformer模型则通过自注意力机制在自然语言处理和计算机视觉任务中表现出色。这些技术在图像生成

并行训练技术概述

首先想要说明的是,并行训练和分布式训练的概念其实都能讲,但前者可能更侧重于技术实施,而后者更倾向于设备,网络等资源层面的分布式,在本专栏,我们都一视同仁。从个人观点来说,如果偏软件点,说并行最好了。并行训练是指将机器学习或者深度学习模型的训练任务给分解成多个子任务,然后在多个计算设备上去并行地进行训

大模型日报|20 篇必读的大模型论文

大模型日报|20 篇必读的大模型论文

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

本文对transformers之pipeline的视频分类(video-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用代码极简的代码部署计算机视觉中的视频分类(video-classificatio

Adam-mini:内存占用减半,性能更优的深度学习优化器

Adam-mini基于Hessian矩阵的结构,将模型参数划分为多个块,每个块使用单一的平均学习率,从而大幅减少了需要存储的学习率数量。在非LLM任务中的实验结果进一步验证了Adam-mini的广泛适用性。Adam-mini不仅在内存占用和计算效率方面具有优势,还能在多种任务中保持或提升模型性能,是

遗传算法与深度学习实战(4)——遗传算法详解与实现

在遗传算法 (Genetic Algorithms, GA) 中,使用选择、交叉、突变和适应度来模拟生物减数分裂或繁殖的基本操作。适应度是衡量个体优劣的指标,可以用于量化模拟个体成功解决给定问题的能力。通过修改遗传算法超参数,如种群大小、世代数、交叉率和突变率等超参数,能够调整和修改进化进程。在本节

【AI落地应用实战】DAMODEL深度学习平台部署+本地调用ChatGLM-6B解决方案

ChatGLM-6B是由清华大学和智谱AI开源的一款对话语言模型,基于 General Language Model (GLM)架构,具有 62亿参数。该模型凭借其强大的语言理解和生成能力、轻量级的参数量以及开源的特性,已经成为在学术界和工业界引起了广泛关注。本篇将介绍使用DAMODEL深度学习平台

人工智能的分类有哪些

弱人工智能(Narrow AI):也称为狭义人工智能,指专注于执行特定任务的AI系统,例如语音识别、图像识别、自然语言处理等。- 强人工智能(General AI):也称为通用人工智能,指具有与人类相当或超越人类智能水平的AI系统,能够在各种不同任务和环境中执行各种智能活动。- 计算智能:主要涉及到

AI:37-基于深度学习的安全帽检测方法研究

随着人工智能的快速发展,安全问题日益受到关注。在工业生产、建筑工地和其他危险环境中,安全帽的佩戴是预防头部伤害的重要措施。本文研究了基于深度学习的安全帽检测方法,通过分析图像数据中的头部和安全帽,实现了自动化安全帽检测和预警系统。1.随着工业自动化的推进和对员工安全的重视,安全帽的佩戴已成为工业生产

AI是否可以主动进行编程和调试?

通过机器学习、深度学习等技术,AI可以学习和模仿人类编写的程序,从而实现编写程序的能力。例如,谷歌的AI机器人Bard具备写程序和调试的功能,可用于20多种编程语言,包括C++、Go、Java、Javascript、Python和Typescript等。此外,还有研究团队开发了能够自动生成完整软件程

60行代码就可以训练/微调 Segment Anything 2 (SAM 2)

本文演示了如何在仅60行代码内(不包括标注和导入)对SAM2进行微调。

【人工智能】全景解析:【机器学习】【深度学习】从基础理论到应用前景的【深度探索】

总结:人工智能作为当今科技领域的前沿,正在迅速改变各行各业。尽管AI带来了前所未有的机遇,但也伴随着重大挑战。人类社会需要在推动AI技术发展的同时,谨慎应对其可能带来的风险和问题。展望:未来,随着技术的进一步成熟和完善,AI将以更智能、更安全的方式融入人类生活,推动社会进步和人类福祉。

【人工智能】人工智能与传统美工结合,AI美工的详细解析。

AI美工是一个结合了人工智能技术与美工设计的岗位,它利用AI工具和技术来辅助或完成美工设计的各项工作。以下是对AI美工的详细解析:

AI人工智能代理工作流AI Agent WorkFlow:设计智能任务处理流程

AI人工智能代理工作流AI Agent WorkFlow:设计智能任务处理流程作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming1. 背景介绍

AI大模型开发——2.深度学习基础(1)

什么是深度学习?首先深度学习是机器学习的一个分支,是通过模拟人脑的神经网络结构来进行模式识别和学习。他在语音识别、图像识别,NLP以及其他很多领域展现了前所未有的性能,其中大语言模型是其NLP领域的一大应用。深度学习技术的核心技术在于深度神经网络,这种神经网络由多层的神经元组成,能够自动的从大量数据

AI:52-基于深度学习的垃圾分类

垃圾分类是一项全球性的环境挑战,随着城市化进程的不断加快,垃圾的产生和管理成为了一个紧迫的问题。传统的垃圾分类方法需要依靠人工进行分类和处理,但由于垃圾种类繁多且形态各异,这种方法效率低下且容易出错。然而,随着人工智能技术的快速发展,基于深度学习的垃圾分类技术成为了一种创新的解决方案。本文将介绍基于