怎么搭建本地chatgpt
要搭建本地的 ChatGPT 模型,您需要具备以下基础知识和技能:熟练使用 Linux 系统,特别是命令行。熟悉 Python 编程语言。理解和经验使用 PyTorch 框架。了解和经验使用 CUDA 和 GPU 计算。如果您具备以上条件,您可以按照以下步骤搭建本地的 ChatGPT 模型:安装 P
【bug】解决yolov5模型转换后,模型推理结果不一致问题
yolov5在模型转换后,推理输出结果与原pt模型偏差较大,是因为参数变化导致的,需要手动指定
ChatGPT强化学习大杀器——近端策略优化(PPO)
近端策略优化是当前最先进的强化学习 (RL) 算法。这种优雅的算法可以用于各种任务,并且已经在很多项目中得到了应用,最近火爆的ChatGPT就采用了该算法。本文重点讲解近端策略优化算法,并用PyTorch从头实现一遍。
具身智能综述和应用(Embodied AI)
因此为了满足AI机器人能够像人类一样在真实世界中实践型学习,具身智能(Embodied AI)逐渐成为一个热门的讨论点,或许它就是通往通用人工智能的关键钥匙。具身的含义不是身体本身,而是与环境交互以及在环境中做事的整体需求和功能,这意味着机器人应该像人类一样通过观察、移动、说话和与世界互动来学习。
ChatGPT教你怎么样论文写的又快又好
在未来,ChatGPT 技术将继续发展和完善,为论文写作和学术研究带来更多的便利和创新,同时也需要研究人员不断地进行实践和探索,将技术应用到更加广泛的领域和实际问题中,以提高科学研究和学术交流的效率和质量。
深度学习制作自己的数据集—为数据集打上标签保存为txt文件,并进行划分和加载数据集
1 为图片数据集打上标签并保存为txt文件2 将txt文件中的图片标签数据集随机划分为训练集和测试集3 加载txt文件中的图片标签数据集
用于微小目标检测的上下文扩展和特征细化网络
作者又将这样的ASPP模块的融合方式通过下面三种方式进行实验,其中(a)和(c)方式就是一般的进行相加和拼接,几种不同的特征的权重是相同的,而对于(b)方式就是将最终结果再通过一个注意力机制进行重要性分析。一般来说第二种方式是比较不错的,因为这种方法我是在其他论文上见过的,在那篇小目标检测论文中,(
SegFormer
取消位置编码,使用简单的解码器
目标检测算法——图像分割数据集汇总(附下载链接)
🎄🎄近期,小海带在空闲之余,收集整理了一批图像分割数据集供大家参考。整理不易,小伙伴们记得一键三连喔!!!🎈🎈
深度学习实战14(进阶版)-手写文字OCR识别,手写笔记也可以识别了
大家好,我是微学AI,今天给大家带来手写OCR识别的项目。手写的文稿在日常生活中较为常见,比如笔记、会议记录,合同签名、手写书信等,手写体的文字到处都有,所以针对手写体识别也是有较大的需求。
超详细!手把手带你轻松用 MMSegmentation 跑语义分割数据集
本文主要讲解了数据集相关的内容,包括目前学术界主流的语义分割数据集在 MMSegmentation中的实现,以及如何用 MMSegmentation 跑自己的数据集。希望可以帮助大家快速上手使用 MMSegmentation 代码库进行实验。.........
多模态特征融合:图像、语音、文本如何转为特征向量并进行分类
学习多模态的话题可以从深度学习的分类任务出发,因为分类任务是最直观的可以观察到不同模态的数据,通过输入数据到模型中,我们可以看到模型是如何学习到数据的特征向量的,同时分类任务的模型也是实现更复杂任务模型的基础。从分类任务中可以了解到图像、文本、语音在模型的特征向量是什么。以飞浆的多模态视频分类模型为
YOLOv7全文翻译
YOLOv7全文翻译,CVPR2022:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
yolov5 loss函数理解
不同于IOU匹配,yolov5采用基于宽高比例的匹配策略,GT的宽高与anchors的宽高对应相除得到ratio1,anchors的宽高与GT的宽高对应相除得到ratio2,取ratio1和ratio2的最大值作为最后的宽高比,该宽高比和设定阈值(默认为4)比较,小于设定阈值的anchor则为匹配到
深度学习模型C++部署TensorRT
如何最简单的在无CUDA环境的机器上利用Tensorrt部署深度学习模型。
【魔改YOLOv5-6.x(4)】结合EIoU、Alpha-IoU损失函数
文章目录前言EIoU论文简介加入YOLOv5Alpha-IoU论文简介加入YOLOv5References前言本文使用的YOLOv5版本为v6.1,对YOLOv5-6.x网络结构还不熟悉的同学,可以移步至:【YOLOv5-6.x】网络模型&源码解析想要尝试改进YOLOv5-6.1的同学,可以
yolov7配置与训练记录(二)
yolov7配置与训练记录(一) 已经完成了环境的配置,下面开始文件内部的操作yolov7官方下载地址为1 将下载好的预训练权重放在内需要在yolov7中新建weights文件夹(也是为了方便管理权重文件)如果未报错,则说明成功需要在yolov7中新建datasets文件夹(也是为了方便管理训练数据
Multihead Attention - 多头注意力
多头注意力的基本概念及实现
深度学习训练营之yolov5训练自己的数据集
这个yolov5的训练总算是弄出来了,期间遇到了很多的报错,不过也算是学到了许多
浅析Swin transformer模型(通俗易懂版)
对于最近新出的Swin Transformer的系统学习,包括模型的基本结构、参数介绍、计算过程等详细介绍,全面了解该模型,文中包含相关代码和论文下载连接。