
医学图像的深度学习的完整代码示例:使用Pytorch对MRI脑扫描的图像进行分割
本文我们将介绍如何使用QuickNAT对人脑的图像进行分割。使用MONAI, PyTorch和用于数据可视化和计算的常见Python库,如NumPy, TorchIO和matplotlib。
反射填充详解ReflectionPad2d(padding)
这种填充方式是以输入向量的边界为对称轴,以设定的padding大小为步长,将输入向量的边界内padding大小的元素,对称填充。1)当padding=(2,2,1,1)时,表示向量以左、右、上、下边界为对称轴,左、右、上、下分别填充宽度为2,2,1,1的元素。1)当padding=(1,2)时,表示
2023年目标检测毕业设计(yolov5车辆识别、车辆检测、车牌识别、行人识别)
OpenCV提供的视觉处理算法非常丰富,并且它部分以C语言编写,加上其开源的特性,处理得当,不需要添加新的外部支持也可以完整的编译链接生成执行程序,所以很多人用它来做算法的移植,OpenCV的代码经过适当改写可以正常的运行在DSP系统和ARM嵌入式系统中。车牌区域的定位采用基于形状的方法。车牌的特征
注意力机制(四):多头注意力
多头注意力(Multi-Head Attention)是注意力机制的一种扩展形式,可以在处理序列数据时更有效地提取信息。在标准的注意力机制中,我们计算一个加权的上下文向量来表示输入序列的信息。而在多头注意力中,我们使用多组注意力权重,每组权重可以学习到不同的语义信息,并且每组权重都会产生一个上下文向
损失函数解读 之 Focal Loss
前言Focal loss 是一个在目标检测领域常用的损失函数,它是何凯明大佬在RetinaNet网络中提出的,解决了目标检测中正负样本极不平衡和 难分类样本学习的问题。论文名称:Focal Loss for Dense Object Detection目录什么是正负样本极不平衡?two-stage
数字孪生及深度学习资源分享专栏
数字孪生及深度学习(姿态识别方向)开源代码分享
YOLO V5 改进详解
YOLO V5 论文详解
关于硕士毕业论文中会议conference的参考文献格式修正GB7714-87#outputstyle#endnote
1问题描述在硕士毕业论文中需要按照GB7714-87的参考文献引用标准对会议论文进行参考文献格式规范GB7714-87中的要求如图:(因为我们文中引用的论文一般 不会是论文集,而是论文集合中析出的一篇文章,so这个格式非常复杂,原本下载的outputstyle中没有现成的格式,所以需要手动修正)
使用Dino+SAM+Stable diffusion 自动进行图片的修改
SAM 可以准确识别和提取图像中的对象,与Stable Diffusion 相结合,可以对分割后的图像进行细微的更改。
Swin Transformer之相对位置编码详解
Swin Transformer中非常核心之一即为相对位置编码,在此我将试图将其掰开了揉碎了进行讲解,尽可能以比较形象的方式进行理解。
PyTorch深度学习实战 | 基于深度学习的电影票房预测研究
基于深度学习的映前票房预测模型(Cross&Dense网络结构模型),该模型通过影片基本信息如:电影类型、影片制式、档期和电影的主创阵容和IP特征等信息对上映影片的票房进行预测。本篇采用451部电影作为训练模型,最后再在194部影片上进行测试,模型的绝对精度为55%,相对精度为92%。该模型在使用相