MetaGPT:让AI像人类一样协作编程

在人工智能领域,大型语言模型(LLM)的应用不断突破,为自动化问题解决带来了前所未有的可能性。基于LLM的多智能体系统已经可以解决简单的对话任务,但面对更复杂的任务时,由于LLM之间相互传递信息时产生的“幻觉”现象,导致逻辑不一致,难以找到有效的解决方案。为了克服这一挑战,我们提出了MetaGPT,

时间序列问题解题(基于经验模型,使用机器学习模型)(Datawhale AI 夏令营)

时间序列问题是一类重要的统计和数据分析问题,它涉及对按时间顺序排列的数据点进行分析、建模和预测。时间序列数据是由一系列随时间变化而观测到的数值组成的,这些数据可以反映各种现象,如股票价格、气温变化、销售额、交通流量等。时间序列分析广泛应用于经济学、金融学、气象学、工程学、公共卫生学等众多领域。问题定

多任务高斯过程数学原理和Pytorch实现示例

本文将介绍如何通过共区域化的内在模型(ICM)和共区域化的线性模型(LMC),使用高斯过程对多个相关输出进行建模。

谷歌的时间序列预测的基础模型TimesFM详解和对比测试

在本文中,我们将介绍模型架构、训练,并进行实际预测案例研究。将对TimesFM的预测能力进行分析,并将该模型与统计和机器学习模型进行对比。

Pytorch的编译新特性TorchDynamo的工作原理和使用示例

TorchDynamo 是一个由 PyTorch 团队开发的编译器前端,它旨在自动优化 PyTorch 程序以提高运行效率。

【人工智能】博弈搜索(极小极大值、α-β剪枝)

本文主要介绍了极小极大值算法与α-β算法的原理及实现。

【AI大模型】Transformers大模型库(十一):Trainer训练类

在Hugging Face的Transformers库中,Trainer类是一个强大的工具,用于训练和评估机器学习模型。它简化了数据加载、模型训练、评估和日志记录的过程。

IT入门知识第九部分《人工智能》(9/10)

人工智能,简称AI,是计算机科学的一个分支,它致力于创建能够执行通常需要人类智能的任务的系统。这些任务包括语言理解、学习、推理、规划、感知、运动和操作。人工智能(AI)是计算机科学的一个分支,它旨在创建能够执行通常需要人类智能的任务的系统。这些系统能够模仿人类的学习方式、决策过程和解决问题的能力。A

【人工智能】-- 迁移学习

迁移学习是机器学习领域中一项极具创新性和实用价值的技术。它打破了传统机器学习中每个任务都需从零开始训练模型的局限性,通过巧妙地利用已在相关领域或任务中积累的知识和经验,极大地提高了学习效率和模型性能。在迁移学习中,我们可以从大规模的、通用的数据源中获取有价值的信息,并将其应用到特定的、数据稀缺的目标

机械学习—零基础学习日志004(AI发展历程)

机器学习是人工智能(artifcial intelligence)研究发展到一定阶段的必然产物。二十世纪五十年代到七十年代初,人工智能研究处于“推理期”。那时人们以为只要能赋予机器逻辑推理能力,机器就具有智能。这一阶段的代表性工作主要有 A. Newell 和 H. Simon 的“逻辑理论家”程序

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)

本文对transformers之pipeline的音频分类(audio-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的进行音频分类推理,应用于音频情感识别、音乐曲风判断等业务场景。

Doping:使用精心设计的合成数据测试和评估异常检测器的技术

使用Doping方法,真实数据行会被(通常是)随机修改,修改的方式是确保它们在某些方面可能成为异常值,这时应该被异常检测器检测到。然后通过评估检测器检测Doping记录的效果来评估这些检测器。

【模型微调】AI Native应用中模型微调概述、应用及案例分析。

在AI Native应用中,模型微调是一个关键步骤,它允许开发者使用特定领域的数据对预训练模型进行二次训练过程,从而使其更好地适应特定任务或数据集。模型微调通过调整模型的参数,使模型在特定任务上达到更高的性能。这种技术广泛应用于自然语言处理、图像识别、语音识别等领域。

周志华西瓜书+花书圣经+李航统计学习方法+南瓜书|四大人工智能名著分享

特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、em算法、隐马尔可夫模型和条件随机场等。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。第3部分为进阶知识,内容涉及特征选择与稀

【机器学习】朴素贝叶斯算法详解与实战扩展

然而,这个假设在现实中往往不成立,但实验表明,朴素贝叶斯分类器在许多情况下仍然能够取得很好的分类效果。朴素贝叶斯算法是一种基于概率统计的分类方法,它利用贝叶斯定理和特征条件独立假设来预测样本的类别。尽管其假设特征之间相互独立在现实中往往不成立,但朴素贝叶斯分类器因其计算简单、效率高、对缺失数据不敏感

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

本文为transformers之pipeline专栏的第0篇,后面会以每个task为一篇,共计讲述28+个tasks的用法,通过28个tasks的pipeline使用学习,可以掌握语音、计算机视觉、自然语言处理、多模态乃至强化学习等30w+个huggingface上的开源大模型。让你成为大模型领域的

AI是在帮助开发者还是取代他们?

开发者在选择使用这些工具时,应根据自己的需求和环境进行权衡。AI工具对开发者日常工作的影响是深远的,它们不仅改变了开发流程,还对开发者的技能要求和工作方式产生了重要影响。AI的集成正在逐步改变软件开发的工作流程,并对开发者的工作模式和工具使用提出了新的要求。通过这些策略,开发者可以在AI时代保持竞争

统计学入门:时间序列分析基础知识详解

时间序列分析中包含了许多复杂的数学公式,它们往往难以留存于记忆之中。为了更好地掌握这些内容,本文将整理并总结时间序列分析中的一些核心概念,如自协方差、自相关和平稳性等

Python前沿技术:机器学习与人工智能

深入探讨Python在机器学习和人工智能领域的应用,以及一些前沿技术和工具。

11个提升Python列表编码效率的高级技巧

Python中关于列表的一些很酷的技巧