深入理解GPU内存分配:机器学习工程师的实用指南与实验
给定一个模型架构、数据类型、输入形状和优化器,你能否计算出前向传播和反向传播所需的GPU内存量?
手把手教你快速安装gpu版本的pytorch
比如pytorch版本是1.10.1(需要对应),环境创建时python版本是3.8 (需要对应),cuda 12.3(比它小的都可以),那么下面几个可以下载,选一个下载,最好装到一个英文路径下。第五步:验证torch安装是否成功,import torch成功说明安装成功,如果torch.cuda.
小白学大模型:LLaMA-Factory 介绍与使用
最近这一两周看到不少互联网公司都已经开始秋招提前批了。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。Efficient fine-tuning对于将大型语
图解Pytorch学习率衰减策略(一)
在深度学习中,学习率是一个非常重要的超参数,它控制了模型在每次权重更新时的步长。学习率衰减策略是指在训练过程中逐步减少学习率,从而使得模型更稳定地收敛到最优解。本文将介绍:LinearLR、StepLR、MultiStepLR、ExponentialLR、CosineAnnealingLR、Redu
anaconda修改安装的默认环境
📚✨🎃。
pytorch里tensor用法总结
通过这篇总结,希望可以帮助pytorch学习者更好掌握Tensor的基本用法。
深度学习实战:手把手教你构建多任务、多标签模型
在本文中,我们将基于流行的 MovieLens 数据集,使用稀疏特征来创建一个多任务多标签模型,并逐步介绍整个过程。所以本文将涵盖数据准备、模型构建、训练循环、模型诊断,最后使用 Ray Serve 部署模型的全部流程。
Pytorch基础:Tensor的连续性
在Pytorch中,一个连续的张量指的是张量中各数据元素在底层的存储顺序与其在张量中的位置一致。这意味着每一个元素的地址可以通过下面的线性映射公式来确定:
掌握 PyTorch 张量乘法:八个关键函数与应用场景对比解析
PyTorch提供了几种张量乘法的方法,每种方法都是不同的,并且有不同的应用。我们来详细介绍每个方法,并且详细解释这些函数有什么区别:
Ultralytics YOLO - 最先进的视觉人工智能:yolov8 环境搭建
Ultralytics YOLOv8是一种尖端的,最先进的(SOTA)模型,建立在以前的YOLO版本的成功基础上,并引入了新的功能和改进,以进一步提高性能和灵活性。YOLOv8旨在快速,准确,易于使用,使其成为广泛的目标检测和跟踪,实例分割,图像分类和姿态估计任务的绝佳选择。
用PyTorch 从零开始构建 BitNet 1.58bit
我们手动实现BitNet的编写,并进行的一系列小实验证实,看看1.58bit 模型是否与全精度的大型语言模型相媲美!
【PyTorch】多对象分割项目
对象分割任务的目标是找到图像中目标对象的边界。实际应用例如自动驾驶汽车和医学成像分析。这里将使用PyTorch开发一个深度学习模型来完成多对象分割任务。多对象分割的主要目标是自动勾勒出图像中多个目标对象的边界。对象的边界通常由与图像大小相同的分割掩码定义,在分割掩码中属于目标对象的所有像素基于预定义
Adam-mini:内存占用减半,性能更优的深度学习优化器
论文提出一种新的优化器Adam-mini,在不牺牲性能的情况下减少Adam优化器的内存占用。
深度学习中常用损失函数介绍
选择正确的损失函数对于训练机器学习模型非常重要。不同的损失函数适用于不同类型的问题。本文将总结一些常见的损失函数,并附有易于理解的解释、用法和示例
“Omost:革新AI图像生成,一语成画,开启创意无界新纪元“
Omost,作为ControlNet作者倾力打造的创新项目,标志着图像生成技术的一次革命性飞跃。该项目巧妙地将大型语言模型(LLM)的强大编码能力转化为直观且高效的图像生成能力,为用户带来前所未有的创作体验。Omost项目的问世,不仅为艺术家、设计师等创意工作者提供了强大的创作工具,也为广大图像爱好
人工智能(pytorch)搭建模型25-基于pytorch搭建FPN特征金字塔网络的应用场景,模型结构介绍
大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型25-基于pytorch搭建FPN特征金字塔网络的应用场景,模型结构介绍。特征金字塔网络(FPN)是一种深度学习模型结构,主要应用于目标检测任务中,尤其是对于多尺度目标的检测问题。该网络通过构建自底向上的高分辨率特征图与自顶向
用PyTorch从零开始编写DeepSeek-V2
DeepSeek-V2是一个强大的开源混合专家(MoE)语言模型,通过创新的Transformer架构实现了经济高效的训练和推理。该模型总共拥有2360亿参数,其中每个令牌激活21亿参数,支持最大128K令牌的上下文长度。
VQ-VAE:矢量量化变分自编码器,离散化特征学习模型
VQ-VAE 是变分自编码器(VAE)的一种改进。这些模型可以用来学习有效的表示。本文将深入研究 VQ-VAE 之前,不过,在这之前我们先讨论一些概率基础和 VAE 架构。
PyTorch Tabular:高效优化结构化数据处理的强大工具
PyTorch Tabular 是一个用于构建和训练深度学习模型以解决各种表格数据问题的库。
多任务高斯过程数学原理和Pytorch实现示例
本文将介绍如何通过共区域化的内在模型(ICM)和共区域化的线性模型(LMC),使用高斯过程对多个相关输出进行建模。