【深度学习】(三)图像分类
上一章介绍了深度学习的基础内容,这一章来学习一下图像分类的内容。图像分类是计算机视觉中最基础的一个任务,也是几乎所有的基准模型进行比较的任务。从最开始比较简单的10分类的灰度图像手写数字识别任务mnist,到后来更大一点的10分类的cifar10和100分类的cifar100任务,到后来的image
神经网络加上注意力机制,精度不升反降?
明明人家论文里都证实了显著涨点的,到我这咋就不行了呢?
备赛笔记:神经网络
信息熵为信息量的量度,对于事件x的信息熵为-log(p(x)),x发生概率越小,信息熵越大,信息量越大。1独热矢量(one-hotvector)样本本身人为打的标签,这里相当于对样本分类,某一样本在这一类概率为1,其他概率为0,标签矩阵维数代表分类数量。监督学习(supervisedlearning
无监督学习的12个最重要的算法介绍及其用例总结
无监督学习(Unsupervised Learning)是和监督学习相对的另一种主流机器学习的方法,无监督学习是没有任何的数据标注只有数据本身。
用YOLOv5ds训练自己的数据集,注意点!
YOLOv5ds训练以及预测过程的问题解决。目前检测和分割都可以进行预测!
Python实现基于图神经网络的异构图表示学习和推荐算法研究
安装依赖Python 3.7CPU异构图表示学习(附录)基于对比学习的关系感知异构图神经网络(Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning, RHCO)见 readme基于图神经网络的学术推荐算
基于GAN的时序缺失数据填补前言(1)——RNN介绍及pytorch代码实现
本专栏将主要介绍基于GAN的时序缺失数据填补。提起时序数据,就离不开一个神经网络——循环神经网络(Recurrent Neural Network, RNN)。RNN是一类用于处理序列数据的神经网络。RNN对具有序列特性的数据非常有效,它能挖掘数据中的时序信息。因为在介绍时序缺失数据填补,就离不开R
Block Recurrent Transformer:结合了LSTM和Transformer优点的强大模型
2022年3月Google研究团队和瑞士AI实验室IDSIA提出了一种新的架构,称为Block Recurrent Transformer 从名字中就能看到,这是一个新型的Transformer模型,它利用了lstm的递归机制,在长期序列的建模任务中实现了显著改进。
卷积神经网络在深度学习中新发展的5篇论文推荐
卷积神经网络在深度学习中新发展的5篇论文推荐
分享本周所学——Transformer模型详解
大家好,欢迎来到《分享本周所学》第二期。本人是一名人工智能初学者,最近一周学了一下Transformer这个特别流行而且特别强大的模型,觉得非常有收获,就想用浅显易懂的语言让大家对这个超级神器有所了解。然后因为我也只是一名小白,所以有错误的地方还希望大佬们多多指正。 其实这周我还干了一
ArgMiner:一个用于对论点挖掘数据集进行处理、增强、训练和推理的 PyTorch 的包
对kaggle中Feedback Prize比赛该兴趣的小伙伴推荐了解下。ArgMiner可以用于对SOTA论点挖掘数据集进行标准化处理、扩充、训练和执行推断。
深度学习与神经网络之开宗明义: 详解人工智能
人工指的是人类生产制造而来,与之对应的是自然产生(进化)的。所以与人工智能相对应的就是`自然智能`。但两者并不是完全对立或者互斥的关系。所谓阴在阳之内,不在阳之对。大胆预测一下,未来的发展方向是将人工智能和自然智能进行融合。......
Geoffrey Hinton:我的五十年深度学习生涯与研究心法
“如果能弄清一大批聪明人正在研究什么,然后你再去做不一样的研究,总是一个好主意。”
CS231n-2022 Module1: 神经网络要点概述(2)
本文编译自斯坦福大学的CS231n课程(2022) Module1课程中神经网络部分的内容: 【1】Neural Networks Part 2: Setting up the Data and the Loss To be added.
【深度学习】(2) Transformer 网络解析,代码复现,附Pytorch完整代码
今天和各位分享一下如何使用 Pytorch 构建 Transformer 模型。本文的重点在代码复现,部分知识点介绍的不多,我会在之后的四篇博文中详细介绍 Encoder,Decoder,(Mask)MutiHeadAttention,以及实战案例。之前我也介绍过 Vision Tranformer
基于BP神经网络识别手写字体MINST字符集
问题描述: 本次实验所要解决的问题是使用人工神经网络实现识别手写字体。实验采用MINST手写字符集作为识别对象。其中60000张作为训练集,剩余10000张作为测试集。实验采用python语言进行编程,使用到一些python的第三方库。使用的神经网络模型为BP神经网络,这是一种按照误差逆向传播算法
神经网络-最大池化的使用
池化层的官方文档中介绍了很多种的池化方法,但是最常用的还是MaxPool2d,这里我们也用MaxPool2d来讲解,其他的类似,关键还是要学会看官方文档概述:最大池化目的就是为了保留输入的特征,但是同时把数据量减少,最大池化之后数据量就减少了,对于整个网路来说,进行计算的参数就变少了,就会训练的更快
分享本周所学——人工智能语音识别模型CTC、RNN-T、LAS详解
本人是一名人工智能初学者,最近一周学了一下AI语音识别的原理和三种比较早期的语音识别的人工智能模型,就想把自己学到的这些东西都分享给大家,一方面想用浅显易懂的语言让大家对这几个模型有所了解,另一方面也想让大家能够避免我所遇到的一些问题。然后因为我也只是一名小白,所以有错误的地方还希望大佬们多多指正。
评估和选择最佳学习模型的一些指标总结
在评估模型时,虽然准确性是训练阶段模型评估和应用模型调整的重要指标,但它并不是模型评估的最佳指标,我们可以使用几个评估指标来评估我们的模型。
位置编码(PE)是如何在Transformers中发挥作用的
Transformers不像LSTM具有处理序列排序的内置机制,它将序列中的每个单词视为彼此独立。所以使用位置编码来保留有关句子中单词顺序的信息。