【深度学习】常见的神经网络层(上)

在深度学习中常见的神经网络层的讲解

数据科学中的 10 个重要概念和图表的含义

“当算法给你一条曲线时,一定要知道这个曲线的含义!”

GAN 初学者指南

GAN是一个非常巧妙并且非常有用的模型。当有大量关于 GAN 的论文时,但是你会发现这些论文通常很难理解,你可能会想要一些对初学者更友好的东西。所以本文的对非传统机器学习人员来说,是我能想到的最好的例子。

Python学习记录 使用tensorflow 2.8 完成猫狗识别 使用keras构建CNN神经网络

猫狗识别项目数据分为带标签和不带标签带标签:25000张不带标签:12500张数据分类处理下载的数据存放在data文件夹下# 定义数据存储的文件夹data_dir = './data/'train是25000张带标签的猫狗图片test1是12500张无标签的猫狗图片使用代码核对一下# 进入图片数据的

神经网络入门(详细 )

机器学习流程、K近邻算法,以及详细介绍了神经网络的基本框架。

梯度和法向量的统一理解

在学习梯度和曲面上一点处的法向量的时候,发现它们的计算方法非常相似,但是一开始进入了误区,甚至以为梯度应该是模最大的切向量。想了好久才从几何意义的角度把梯度和法向量统一,希望下面的内容能帮助你加深理解。1.梯度严格意义上梯度只能说是只是函数的梯度。以二元函数为例,对应的平面方程:在某一点=处,如果我

多层感知机还在进步,关于深度学习中MLP的5篇最新的论文推荐

2002年最新的5篇MLP论文推荐

笔记:基于keras的不同神经网络模型Minst手写体识别

基于keras不同神经网络模型的mnist手写体识别

端到端的特征转换示例:使用三元组损失和 CNN 进行特征提取和转换

通过卷积和三元组损失学习数据的表示,并提出了一种端到端的特征转换方法,这种使用无监督卷积的方法简化并应用于各种数据。

LSTM 又回来了! 新论文使用LSTM挑战长序列建模的 ViT

Sequencer 通过将空间信息与节省内存和节省参数的 LSTM 混合来降低内存成本,并在长序列建模上实现与 ViT 竞争的性能。

GAN能进行股票预测吗?

在过去的研究中,出现了而很多的方式,但这些方式和方法并不是很成功,所以本文将这个领域的研究扩展到GANs。看看GANs这个领域是否能够进行预测。

Residual, BottleNeck, Inverted Residual, MBConv的解释和Pytorch实现

上篇ConvNext的文章有小伙伴问BottleNeck,Inverted Residual的区别,所以找了这篇文章,详细的解释一些用到的卷积块,当作趁热打铁吧

使用PyTorch复现ConvNext:从Resnet到ConvNext的完整步骤详解

ConvNext论文提出了一种新的基于卷积的架构,不仅超越了基于 Transformer 的模型(如 Swin),而且可以随着数据量的增加而扩展!今天我们使用Pytorch来对其进行复现。

神经网络与傅立叶变换有关系吗?

傅里叶变换可以视为一种有助于逼近其他函数的函数,神经网络被也认为是一种函数逼近技术或通用函数逼近技术。 本文将讨论傅里叶变换,以及如何将其用于深度学习领域。

2022年关于损失函数的5篇最新论文推荐

2022年最新的损失函数论文总结

BRIO:抽象文本摘要任务新的SOTA模型

在 SimCLS [2]论文发布后不久,作者又发布了抽象文本摘要任务的SOTA结果 [1]。BRIO在上述论文的基础上结合了对比学习范式。

循环神经网络(RNN)

循环神经网络(RNN)文章目录循环神经网络(RNN)注意!!!!!!!RNN模型的作用为什么要使用RNN而不是用MLP?RNN输入与输出RNN模型简单RNN模型LSTM(Long Short-Term Memory)长短期记忆模型GRU(Gated Recurrent Units)参考视频注意!!!

ICLR 2022的10篇论文推荐

一千多篇论文,19个研讨会和8次邀请演讲。 所以我整理了10篇论文作为推荐,希望对你有帮助

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈