资源下载地址:https://download.csdn.net/download/sheziqiong/85978304
资源下载地址:https://download.csdn.net/download/sheziqiong/85978304
目录结构
GNN-Recommendation/
gnnrec/ 算法模块顶级包
hge/ 异构图表示学习模块
kgrec/ 基于图神经网络的推荐算法模块
data/ 数据集目录(已添加.gitignore)
model/ 模型保存目录(已添加.gitignore)
img/ 图片目录
academic_graph/ Django项目模块
rank/ Django应用
manage.py Django管理脚本
安装依赖
Python 3.7
CUDA 11.0
pip install -r requirements_cuda.txt
CPU
pip install -r requirements.txt
异构图表示学习(附录)
基于对比学习的关系感知异构图神经网络(Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning, RHCO)
实验
见 readme
基于图神经网络的推荐算法(附录)
基于图神经网络的学术推荐算法(Graph Neural Network based Academic Recommendation Algorithm, GARec)
实验
见 readme
Django 配置
MySQL 数据库配置
- 创建数据库及用户
CREATEDATABASE academic_graph CHARACTERSET utf8mb4;CREATEUSER'academic_graph'@'%' IDENTIFIED BY'password';GRANTALLON academic_graph.*TO'academic_graph'@'%';
- 在根目录下创建文件.mylogin.cnf
[client]
host = x.x.x.x
port = 3306
user = username
password = password
database = database
default-character-set = utf8mb4
- 创建数据库表
python manage.py makemigrations --settings=academic_graph.settings.prod rank
python manage.py migrate --settings=academic_graph.settings.prod
- 导入 oag-cs 数据集
python manage.py loadoagcs --settings=academic_graph.settings.prod
注:由于导入一次时间很长(约 9 小时),为了避免中途发生错误,可以先用 data/oag/test 中的测试数据调试一下
拷贝静态文件
python manage.py collectstatic --settings=academic_graph.settings.prod
启动 Web 服务器
exportSECRET_KEY=xxx
python manage.py runserver --settings=academic_graph.settings.prod 0.0.0.0:8000
系统截图
搜索论文
论文详情
搜索学者
学者详情
附录
基于图神经网络的推荐算法
数据集
oag-cs - 使用 OAG 微软学术数据构造的计算机领域的学术网络(见 readme)
预训练顶点嵌入
使用 metapath2vec(随机游走 +word2vec)预训练顶点嵌入,作为 GNN 模型的顶点输入特征
- 随机游走
python -m gnnrec.kgrec.random_walk model/word2vec/oag_cs_corpus.txt
- 训练词向量
python -m gnnrec.hge.metapath2vec.train_word2vec --size=128 --workers=8 model/word2vec/oag_cs_corpus.txt model/word2vec/oag_cs.model
召回
使用微调后的 SciBERT 模型(见 readme 第 2 步)将查询词编码为向量,与预先计算好的论文标题向量计算余弦相似度,取 top k
python -m gnnrec.kgrec.recall
召回结果示例:
graph neural network
0.9629 Aggregation Graph Neural Networks
0.9579 Neural Graph Learning: Training Neural Networks Using Graphs
0.9556 Heterogeneous Graph Neural Network
0.9552 Neural Graph Machines: Learning Neural Networks Using Graphs
0.9490 On the choice of graph neural network architectures
0.9474 Measuring and Improving the Use of Graph Information in Graph Neural Networks
0.9362 Challenging the generalization capabilities of Graph Neural Networks for network modeling
0.9295 Strategies for Pre-training Graph Neural Networks
0.9142 Supervised Neural Network Models for Processing Graphs
0.9112 Geometrically Principled Connections in Graph Neural Networks
recommendation algorithm based on knowledge graph
0.9172 Research on Video Recommendation Algorithm Based on Knowledge Reasoning of Knowledge Graph
0.8972 An Improved Recommendation Algorithm in Knowledge Network
0.8558 A personalized recommendation algorithm based on interest graph
0.8431 An Improved Recommendation Algorithm Based on Graph Model
0.8334 The Research of Recommendation Algorithm based on Complete Tripartite Graph Model
0.8220 Recommendation Algorithm based on Link Prediction and Domain Knowledge in Retail Transactions
0.8167 Recommendation Algorithm Based on Graph-Model Considering User Background Information
0.8034 A Tripartite Graph Recommendation Algorithm Based on Item Information and User Preference
0.7774 Improvement of TF-IDF Algorithm Based on Knowledge Graph
0.7770 Graph Searching Algorithms for Semantic-Social Recommendation
scholar disambiguation
0.9690 Scholar search-oriented author disambiguation
0.9040 Author name disambiguation in scientific collaboration and mobility cases
0.8901 Exploring author name disambiguation on PubMed-scale
0.8852 Author Name Disambiguation in Heterogeneous Academic Networks
0.8797 KDD Cup 2013: author disambiguation
0.8796 A survey of author name disambiguation techniques: 2010–2016
0.8721 Who is Who: Name Disambiguation in Large-Scale Scientific Literature
0.8660 Use of ResearchGate and Google CSE for author name disambiguation
0.8643 Automatic Methods for Disambiguating Author Names in Bibliographic Data Repositories
0.8641 A brief survey of automatic methods for author name disambiguation
精排
构造 ground truth
(1)验证集
从 AMiner 发布的 AI 2000 人工智能全球最具影响力学者榜单 抓取人工智能 20 个子领域的 top 100 学者
pip install scrapy>=2.3.0
cd gnnrec/kgrec/data/preprocess
scrapy runspider ai2000_crawler.py -a save_path=/home/zzy/GNN-Recommendation/data/rank/ai2000.json
与 oag-cs 数据集的学者匹配,并人工确认一些排名较高但未匹配上的学者,作为学者排名 ground truth 验证集
exportDJANGO_SETTINGS_MODULE=academic_graph.settings.common
exportSECRET_KEY=xxx
python -m gnnrec.kgrec.data.preprocess.build_author_rank build-val
(2)训练集
参考 AI 2000 的计算公式,根据某个领域的论文引用数加权求和构造学者排名,作为 ground truth 训练集
计算公式:
即:假设一篇论文有 n 个作者,第 k 作者的权重为 1/k,最后一个视为通讯作者,权重为 1/2,归一化之后计算论文引用数的加权求和
python -m gnnrec.kgrec.data.preprocess.build_author_rank build-train
(3)评估 ground truth 训练集的质量
python -m gnnrec.kgrec.data.preprocess.build_author_rank eval
nDGC@100=0.2420 Precision@100=0.1859 Recall@100=0.2016
nDGC@50=0.2308 Precision@50=0.2494 Recall@50=0.1351
nDGC@20=0.2492 Precision@20=0.3118 Recall@20=0.0678
nDGC@10=0.2743 Precision@10=0.3471 Recall@10=0.0376
nDGC@5=0.3165 Precision@5=0.3765 Recall@5=0.0203
(4)采样三元组
从学者排名训练集中采样三元组(t, ap, an),表示对于领域 t,学者 ap 的排名在 an 之前
python -m gnnrec.kgrec.data.preprocess.build_author_rank sample
训练 GNN 模型
python -m gnnrec.kgrec.train model/word2vec/oag-cs.model model/garec_gnn.pt data/rank/author_embed.pt
异构图表示学习
数据集
ACM - ACM 学术网络数据集
DBLP - DBLP 学术网络数据集
ogbn-mag - OGB 提供的微软学术数据集
oag-venue - oag-cs 期刊分类数据集
数据集顶点数边数目标顶点类别数ACM1124634852paper3DBLP26128239566author4ogbn-mag193974321111007paper349oag-venue423516934520417paper360Baselines
R-GCN
HGT
HGConv
R-HGNN
C&S
HeCo
R-GCN (full batch)
python -m gnnrec.hge.rgcn.train --dataset=acm --epochs=10
python -m gnnrec.hge.rgcn.train --dataset=dblp --epochs=10
python -m gnnrec.hge.rgcn.train --dataset=ogbn-mag --num-hidden=48
python -m gnnrec.hge.rgcn.train --dataset=oag-venue --num-hidden=48 --epochs=30
(使用 minibatch 训练准确率就是只有 20% 多,不知道为什么)
预训练顶点嵌入
使用 metapath2vec(随机游走 +word2vec)预训练顶点嵌入,作为 GNN 模型的顶点输入特征
python -m gnnrec.hge.metapath2vec.random_walk model/word2vec/ogbn-mag_corpus.txt
python -m gnnrec.hge.metapath2vec.train_word2vec --size=128 --workers=8 model/word2vec/ogbn-mag_corpus.txt model/word2vec/ogbn-mag.model
HGT
python -m gnnrec.hge.hgt.train_full --dataset=acm
python -m gnnrec.hge.hgt.train_full --dataset=dblp
python -m gnnrec.hge.hgt.train --dataset=ogbn-mag --node-embed-path=model/word2vec/ogbn-mag.model --epochs=40
python -m gnnrec.hge.hgt.train --dataset=oag-venue --node-embed-path=model/word2vec/oag-cs.model --epochs=40
HGConv
python -m gnnrec.hge.hgconv.train_full --dataset=acm --epochs=5
python -m gnnrec.hge.hgconv.train_full --dataset=dblp --epochs=20
python -m gnnrec.hge.hgconv.train --dataset=ogbn-mag --node-embed-path=model/word2vec/ogbn-mag.model
python -m gnnrec.hge.hgconv.train --dataset=oag-venue --node-embed-path=model/word2vec/oag-cs.model
R-HGNN
python -m gnnrec.hge.rhgnn.train_full --dataset=acm --num-layers=1 --epochs=15
python -m gnnrec.hge.rhgnn.train_full --dataset=dblp --epochs=20
python -m gnnrec.hge.rhgnn.train --dataset=ogbn-mag model/word2vec/ogbn-mag.model
python -m gnnrec.hge.rhgnn.train --dataset=oag-venue --epochs=50 model/word2vec/oag-cs.model
C&S
python -m gnnrec.hge.cs.train --dataset=acm --epochs=5
python -m gnnrec.hge.cs.train --dataset=dblp --epochs=5
python -m gnnrec.hge.cs.train --dataset=ogbn-mag --prop-graph=data/graph/pos_graph_ogbn-mag_t5.bin
python -m gnnrec.hge.cs.train --dataset=oag-venue --prop-graph=data/graph/pos_graph_oag-venue_t5.bin
HeCo
python -m gnnrec.hge.heco.train --dataset=ogbn-mag model/word2vec/ogbn-mag.model data/graph/pos_graph_ogbn-mag_t5.bin
python -m gnnrec.hge.heco.train --dataset=oag-venue model/word2vec/oag-cs.model data/graph/pos_graph_oag-venue_t5.bin
(ACM 和 DBLP 的数据来自 https://github.com/ZZy979/pytorch-tutorial/tree/master/gnn/heco ,准确率和 Micro-F1 相等)
RHCO
基于对比学习的关系感知异构图神经网络(Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning, RHCO)
在 HeCo 的基础上改进:
- 网络结构编码器中的注意力向量改为关系的表示(类似于 R-HGNN)
- 正样本选择方式由元路径条数改为预训练的 HGT 计算的注意力权重、训练集使用真实标签
- 元路径视图编码器改为正样本图编码器,适配 mini-batch 训练
- Loss 增加分类损失,训练方式由无监督改为半监督
- 在最后增加 C&S 后处理步骤
ACM
python -m gnnrec.hge.hgt.train_full --dataset=acm --save-path=model/hgt/hgt_acm.pt
python -m gnnrec.hge.rhco.build_pos_graph_full --dataset=acm --num-samples=5 --use-label model/hgt/hgt_acm.pt data/graph/pos_graph_acm_t5l.bin
python -m gnnrec.hge.rhco.train_full --dataset=acm data/graph/pos_graph_acm_t5l.bin
DBLP
python -m gnnrec.hge.hgt.train_full --dataset=dblp --save-path=model/hgt/hgt_dblp.pt
python -m gnnrec.hge.rhco.build_pos_graph_full --dataset=dblp --num-samples=5 --use-label model/hgt/hgt_dblp.pt data/graph/pos_graph_dblp_t5l.bin
python -m gnnrec.hge.rhco.train_full --dataset=dblp --use-data-pos data/graph/pos_graph_dblp_t5l.bin
ogbn-mag(第 3 步如果中断可使用–load-path 参数继续训练)
python -m gnnrec.hge.hgt.train --dataset=ogbn-mag --node-embed-path=model/word2vec/ogbn-mag.model --epochs=40 --save-path=model/hgt/hgt_ogbn-mag.pt
python -m gnnrec.hge.rhco.build_pos_graph --dataset=ogbn-mag --num-samples=5 --use-label model/word2vec/ogbn-mag.model model/hgt/hgt_ogbn-mag.pt data/graph/pos_graph_ogbn-mag_t5l.bin
python -m gnnrec.hge.rhco.train --dataset=ogbn-mag --num-hidden=64 --contrast-weight=0.9 model/word2vec/ogbn-mag.model data/graph/pos_graph_ogbn-mag_t5l.bin model/rhco_ogbn-mag_d64_a0.9_t5l.pt
python -m gnnrec.hge.rhco.smooth --dataset=ogbn-mag model/word2vec/ogbn-mag.model data/graph/pos_graph_ogbn-mag_t5l.bin model/rhco_ogbn-mag_d64_a0.9_t5l.pt
oag-venue
python -m gnnrec.hge.hgt.train --dataset=oag-venue --node-embed-path=model/word2vec/oag-cs.model --epochs=40 --save-path=model/hgt/hgt_oag-venue.pt
python -m gnnrec.hge.rhco.build_pos_graph --dataset=oag-venue --num-samples=5 --use-label model/word2vec/oag-cs.model model/hgt/hgt_oag-venue.pt data/graph/pos_graph_oag-venue_t5l.bin
python -m gnnrec.hge.rhco.train --dataset=oag-venue --num-hidden=64 --contrast-weight=0.9 model/word2vec/oag-cs.model data/graph/pos_graph_oag-venue_t5l.bin model/rhco_oag-venue.pt
python -m gnnrec.hge.rhco.smooth --dataset=oag-venue model/word2vec/oag-cs.model data/graph/pos_graph_oag-venue_t5l.bin model/rhco_oag-venue.pt
消融实验
python -m gnnrec.hge.rhco.train --dataset=ogbn-mag --model=RHCO_sc model/word2vec/ogbn-mag.model data/graph/pos_graph_ogbn-mag_t5l.bin model/rhco_sc_ogbn-mag.pt
python -m gnnrec.hge.rhco.train --dataset=ogbn-mag --model=RHCO_pg model/word2vec/ogbn-mag.model data/graph/pos_graph_ogbn-mag_t5l.bin model/rhco_pg_ogbn-mag.pt
实验结果
顶点分类
参数敏感性分析
消融实验
资源下载地址:https://download.csdn.net/download/sheziqiong/85978304
资源下载地址:https://download.csdn.net/download/sheziqiong/85978304
版权归原作者 biyezuopin 所有, 如有侵权,请联系我们删除。