CMT:卷积与Transformers的高效结合

论文提出了一种基于卷积和VIT的混合网络,利用Transformers捕获远程依赖关系,利用cnn提取局部信息。构建了一系列模型cmt,它在准确性和效率方面有更好的权衡。

使用GPT-4生成训练数据微调GPT-3.5 RAG管道

我们现在可以使用GPT-4生成训练数据,然后用更便宜的API(gpt-3.5 turbo)来进行微调,从而获得更准确的模型,并且更便宜。

Pandas DataFrame 数据存储格式比较

Pandas 支持多种存储格式,在本文中将对不同类型存储格式下的Pandas Dataframe的读取速度、写入速度和大小的进行测试对比。

量化自定义PyTorch模型入门教程

基础模型与量化模型具有相似的准确性,但模型尺寸大大减小,这在我们希望将其部署到服务器或低功耗设备上时至关重要。

15个基本且常用Pandas代码片段

以上这15个Pandas代码片段是我们日常最常用的数据操作和分析操作。熟练的掌握它,并将它们合并到工作流程中,可以提高处理和探索数据集的效率和效果。

20用于深度学习训练和研究的数据集

本文将整理常用且有效的20个数据集。

Pandas 2.1发布了

2023年3月1日,Pandas 发布了2.0版本。6个月后(8月30日),更新了新的2.1版。让我们看看他有什么重要的更新。

是否在业务中使用大语言模型?

但LLM究竟是什么,它们如何使你的企业受益?它只是一种炒作,还是会长期存在?

使用卷积操作实现因子分解机

本文将介绍如何使用卷积操作实现因子分解机器。

Fooocus:一个简单且功能强大的Stable Diffusion webUI

在这篇文章中,我们将介绍如何在本地和Colab上使用Fooocus

Dynamic ReLU:根据输入动态确定的ReLU

这是我最近才看到的一篇论文,它提出了动态ReLU (Dynamic ReLU, DY-ReLU),可以将全局上下文编码为超函数,并相应地调整分段线性激活函数

理解图傅里叶变换和图卷积

图神经网络(GNN)代表了一类强大的深度神经网络架构。本文将介绍图卷积的理论基础。深入研究图傅立叶变换的复杂性及其与图卷积的联系

微调llama2模型教程:创建自己的Python代码生成器

本文将演示如何使用PEFT、QLoRa和Huggingface对新的lama-2进行微调,生成自己的代码生成器。所以本文将重点展示如何定制自己的llama2,进行快速训练,以完成特定任务。

StableVideo:使用Stable Diffusion生成连续无闪烁的视频

使用Stable Diffusion生成视频一直是人们的研究目标,但是我们遇到的最大问题是视频帧和帧之间的闪烁,但是最新的论文则着力解决这个问题。

Pandas字符串操作的各种方法速度测试

由于LLM的发展, 很多的数据集都是以DF的形式发布的,所以通过Pandas操作字符串的要求变得越来越高了,所以本文将对字符串操作方法进行基准测试,看看它们是如何影响pandas的性能的。因为一旦Pandas在处理数据时超过一定限制,它们的行为就会很奇怪。

使用Pytorch和OpenCV实现视频人脸替换

“DeepFaceLab”项目已经发布了很长时间了,作为研究的目的,本文将介绍他的原理,并使用Pytorch和OpenCV创建一个简化版本。

FlashAttention算法详解

这篇文章的目的是详细的解释Flash Attention,它无需任何近似即可加速注意力计算并减少内存占用

知识图谱入门:使用Python创建知识图,分析并训练嵌入模型

本文中我们将解释如何构建KG、分析它以及创建嵌入模型。

Google开源了可视化编程框架Visual Blocks for ML

Visual Blocks for ML是一个由Google开发的开源可视化编程框架。它使你能够在易于使用的无代码图形编辑器中创建ML管道。

马修斯相关系数MCC简介

在评估机器学习模型的性能时,F1score都被首选指标。在本文中,我们将介绍一个值得更多关注和认可的替代度量:马修斯相关系数(MCC)。

个人信息

加入时间:2020-01-23

最后活动:1 天前

发帖数:2175

回复数:1