在不平衡数据上使用AUPRC替代ROC-AUC

ROC曲线和曲线下面积AUC被广泛用于评估二元分类器的性能。但是有时,基于精确召回曲线下面积 (AUPRC) 的测量来评估不平衡数据的分类却更为合适。

如何计算LSTM层中的参数数量

长短期记忆网络(通常称为“ LSTM”)是一种特殊的RNN,经过精心设计LSTM能够学习长期的依赖

卷积神经网络中的傅里叶变换:1024x1024 的傅里叶卷积

本文介绍了卷积和DFT背后的数学理论,通过观察不同的光谱获得了一些想发,并且通过TensorFlow进行了实现,并验证了结果的正确性。

JAX介绍和快速入门示例

JAX 是一个由 Google 开发的用于优化科学计算Python 库,它可以被视为 GPU 和 TPU 上运行的NumPy,本文将介绍它的一些基本概念。

14个面试中常见的概率问题

在任何数据科学面试中,基本上都会问道一些有关概率的问题。 这在本文中我总结了一些相关的问题供大家参考。

论文推荐:TResNet改进ResNet 实现高性能 GPU 专用架构并且效果优于 EfficientNet

论文首先讨论了面向 FLOP 的优化引起的瓶颈。然后建议更好地利用 GPU 结构的设计。最后引入了一个新的 GPU 专用模型,称其为 TResNet。

使用 Numpy 创建自己的深度学习框架

本文并不是为了造轮子,只是通过手动实现来介绍建基本深度学习框架所需组件和步骤

一个新的基于样本数量计算的的高斯 softmax 函数

本文提出了一种基于最小误差界和高斯统计量的softmax函数的安全快速扩展,可以在某些情况下作为softmax的替代

使用Python从头开始手写回归树

在本篇文章中,我们将介绍回归树及其基本数学原理,并从头开始使用Python实现一个完整的回归树模型。

基于神经网络集成学习的研究论文推荐

集成 的概念在机器学习中很常见。集成可以被认为是一种学习技术,可以将许多模型连接起来解决一个问题

在没有训练数据的情况下通过领域知识利用弱监督方法生成NLP大型标记数据集

介绍了弱监督的概念,以及如何使用它来将专家的领域知识编码到机器学习模型中。我还讨论了一些标记模型。在两步弱监督方法中结合这些框架,可以在不收集大量手动标记训练数据集的情况下实现与全监督ML模型相媲美的准确性!

LCE:一个结合了随机森林和XGBoost优势的新的集成方法

LCE它结合了它们的优势并采用互补的多样化方法来获得更好的泛化预测器。 进一步增强了随机森林和 XGBoost 的预测性能。

微调大型语言模型示例:使用T5将自然语言转换成SQL语句

在本文中,我们将使用谷歌的文本到文本生成模型T5和我们的自定义数据进行迁移学习,这样它就可以将基本问题转换为SQL查询。

期望最大化(Expectation Maximization)算法简介和Python代码实现

期望最大化(EM)算法被广泛用于估计不同统计模型的参数。 在本文中将解释它是如何工作的,并使用python手写进行实现

90个Numpy的有用的代码片段

这些有用的片段在面试中会经常出现,也可以作为日常的numpy练习。

使用动图深入解释微软的Swin Transformer

本文旨在使用插图和动画为Swin Transformers提供全面的指南,以帮助您更好地理解这些概念。

在 Pandas 中使用 Merge、Join 、Concat合并数据的效率对比

在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。

数据科学中的 10 个重要概念和图表的含义

“当算法给你一条曲线时,一定要知道这个曲线的含义!”

在时间序列中使用Word2Vec学习有意义的时间序列嵌入表示

在这篇文章中,介绍了众所周知的 Word2Vec 算法的推广,用于学习有价值的向量表示。我们在时间序列上下文中应用 Word2Vec,并展示了这种技术在非标准 NLP 应用程序中的有效性。整个过程可以很容易地集成到任何地方,并且很容易用于迁移学习任务。

个人信息

加入时间:2020-01-23

最后活动:3 小时前

发帖数:1802

回复数:1