超长时间序列数据可视化的6个技巧

本文展示了6种用于绘制长时间序列数据的可视化方法,通过使用交互函数和改变视角,我可以使结果变得友好并且能够帮助我们更加关注重要的数据点。

生成模型VAE、GAN和基于流的模型详细对比

生成算法有很多,但属于深度生成模型类别的最流行的模型是变分自动编码器(VAE)、gan和基于流的模型。

Vision Transformer和MLP-Mixer联系和对比

本文的主要目标是说明MLP-Mixer和ViT实际上是一个模型类,尽管它们在表面上看起来不同。

4个Python推导式相关的开发技巧

5道面试中的常见的统计学问题

贝叶斯回归:使用 PyMC3 实现贝叶斯回归

在这篇文章中,我们将介绍如何使用PyMC3包实现贝叶斯线性回归,并快速介绍它与普通线性回归的区别。

transformers的近期工作成果综述

在本文中,对基于transformer 的工作成果做了一个简单的总结,将最新的transformer 研究成果(特别是在2021年和2022年发表的研究成果)进行详细的调研。

Pytorch创建多任务学习模型

一般来说多任务学的模型架构非常简单:一个骨干网络作为特征的提取,然后针对不同的任务创建多个头。利用单一模型解决多个任务。

常用的20个计算机视觉开源数据集总结

本文总结了常用的开源计算机视觉数据集

单变量时间序列平滑方法介绍

在本文中将介绍和解释时间序列的平滑方法

10种常见的回归算法总结和介绍

线性回归是机器学习中最简单的算法,它可以通过不同的方式进行训练。 在本文中,我们将介绍以下回归算法:线性回归、Robust 回归、Ridge 回归、LASSO 回归、Elastic Net、多项式回归、多层感知机、随机森林回归和支持向量机。

基于扩散模型的图像压缩:创建基于Stable Diffusion的有损压缩编解码器

Stable Diffusion是最近在图像生成领域大火的模型,在对他研究的时候我发现它可以作为非常强大的有损图像压缩编解码器。

广义加性模型(GAMs)

作为回归家族的一个扩展,广义加性模型(GAMs)是最强大的模型之一,可以为任何回归问题建模!!

使用可视化工具和统计方法检测异常值

异常值(离群值)是指距离其他数据值太远的数据值。数据异常值可能是自然产生的,也可能是由于测量不准确、或系统故障造成的。与缺失值类似,异常值会破坏数据科学项目并返回错误的结果或预测。

目标检测YOLO系列算法的进化史

本文中将简单总结YOLO的发展历史,YOLO是计算机视觉领域中著名的模型之一

使用Keras Tuner进行自动超参数调优的实用教程

在本文中将介绍如何使用 KerasTuner,并且还会介绍其他教程中没有的一些技巧,例如单独调整每一层中的参数或与优化器一起调整学习率等。

在自己电脑运行Stable Diffusion和完整项目下载

本文中将介绍如何下载Stable Diffusion代码和预训练模型,并且将其整合成一个能够在本地电脑运行的项目,最后也会提供完整项目的下载。

使用 Temporal Fusion Transformer 进行时间序列预测

目前来看表格类的数据的处理还是树型的结构占据了主导地位。但是在时间序列预测中,深度学习神经网络是有可能超越传统技术的。

美化Matplotlib的3个小技巧

在本文中,我们将介绍3个可以用于定制Matplotlib图表的技巧

使用阈值调优改进分类模型性能

在本文中将演示如何通过阈值调优来提高模型的性能。

个人信息

加入时间:2020-01-23

最后活动:1 天前

发帖数:1801

回复数:1