使用高斯混合模型拆分多模态分布
本文介绍如何使用高斯混合模型将一维多模态分布拆分为多个分布。
9月人工智能论文和项目推荐
因为LLM的火爆,所以最近的论文都是和LLM相关的
EfficientFormer:高效低延迟的Vision Transformers
我们都知道Transformers相对于CNN的架构效率并不高,这导致在一些边缘设备进行推理时延迟会很高,所以这次介绍的论文EfficientFormer号称在准确率不降低的同时可以达到MobileNet的推理速度。
基于对数谱图的深度学习心音分类
这是一篇很有意思的论文,他基于心音信号的对数谱图,提出了两种心率音分类模型,我们都知道:频谱图在语音识别上是广泛应用的,这篇论文将心音信号作为语音信号处理,并且得到了很好的效果。
快速找到离群值的三种方法
本文将介绍3个在数据集中查找离群值的Python方法
在Python中创建相关系数矩阵的6种方法
相关系数矩阵(Correlation matrix)是数据分析的基本工具。它们让我们了解不同的变量是如何相互关联的。在Python中,有很多个方法可以计算相关系数矩阵,今天我们来对这些方法进行一个总结
使用QLoRA对Llama 2进行微调的详细笔记
本文是一个良好的开端,因为可以把我们在这里学到的大部分东西应用到微调任何LLM的任务中。
ChatGPT可以取代搜索引擎吗?
ChatGPT对于一些简单的问题,可以完美的完成任务。但是我让它写一篇完整的文章,看看它能否代替我进行写作地的时候,我确定它不能完全取代人类。
时间序列的重采样和pandas的resample方法介绍
重采样是时间序列分析中处理时序数据的一项基本技术。它是关于将时间序列数据从一个频率转换到另一个频率,它可以更改数据的时间间隔,通过上采样增加粒度,或通过下采样减少粒度。
Stability AI发布基于稳定扩散的音频生成模型Stable Audio
近日Stability AI推出了一款名为Stable Audio的尖端生成模型,该模型可以根据用户提供的文本提示来创建音乐。
图注意网络(GAT)的可视化实现详解
能够可视化的查看对于理解图神经网络(gnn)越来越重要,所以在这篇文章中,我将介绍传统GNN层的实现,然后展示ICLR论文“图注意力网络”中对传统GNN层的改进。
Python中进行特征重要性分析的9个常用方法
特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。
Recognize Anything:一个强大的图像标记模型
Recognize Anything是一种新的图像标记基础模型,与传统模型不同,它不依赖于手动注释进行训练;相反,它利用大规模的图像-文本对
向量数据库简介和5个常用的开源项目介绍
本文旨在全面介绍向量数据库,并介绍2023年可用的最佳向量数据库。
Llama-2 推理和微调的硬件要求总结:RTX 3080 就可以微调最小模型
大语言模型微调是指对已经预训练的大型语言模型(例如Llama-2,Falcon等)进行额外的训练,以使其适应特定任务或领域的需求。
Falcon 180B 目前最强大的开源模型
Technology Innovation Institute最近发布了Falcon 180B大型语言模型(LLM),它击败了Llama-2 70b,与谷歌Bard的基础模型PaLM-2 Large不相上下。
在自定义数据集上实现OpenAI CLIP
在本文中,我们将使用PyTorch中从头开始实现CLIP模型,以便我们对CLIP有一个更好的理解
Langchain的一些问题和替代选择
Langchain因其简化大型语言模型(llm)的交互方面的到关注。凭借其高级的API可以简化将llm集成到各种应用程序中的过程。
SplitMask:大规模数据集是自我监督预训练的必要条件吗?
自监督预训练需要大规模数据集吗?这是2021年发布的一篇论文,提出了一种类似于BEiT的去噪自编码器的变体SplitMask,它对预训练数据的类型和大小具有更强的鲁棒性。
Nougat:一种用于科学文档OCR的Transformer 模型
Nougat是一种VIT模型。它的目标是将这些文件转换为标记语言,以便更容易访问和机器可读。