15个节省时间的Jupyter技巧

Jupyter Notebooks使用非常简单并且对于任何面向python的任务都可以非常方便的使用。

变分自编码器VAE的数学原理

变分自编码器(VAE)是一种应用广泛的无监督学习方法,它的应用包括图像生成、表示学习和降维等。

基于CNN和LSTM的气象图降水预测示例

我们是否可以通过气象图来预测降水量呢?今天我们来使用CNN和LSTM进行一个有趣的实验。

Pandas中高效的选择和替换操作总结

在本文中,我们将重点介绍在DataFrame上经常执行的两个最常见的任务,有效地选择特定的和随机的行和列,以及使用replace()函数使用列表和字典替换一个或多个值。

计算机视觉面试中一些热门话题整理

通常在机器学习面试中,问完常见基础知识的技术问题之后会有具体的项目问题的讨论,所以这里准备了一些项目相关的话题,以可以帮助你准备和通过计算机视觉相关的面试。

强化学习的基础知识和6种基本算法解释

本文将涉及强化学习的术语和基本组成部分,以及不同类型的强化学习(无模型、基于模型、在线学习和离线学习)。本文最后用算法来说明不同类型的强化学习。

Python中的魔法方法

python中的魔法方法是一些可以让你对类添加“魔法”的特殊方法,它们经常是两个下划线包围来命名的

使用PyTorch进行知识蒸馏的代码示例

在本文中,我们将探索知识蒸馏的概念,以及如何在PyTorch中实现它。

从另外一个角度解释AUC

AUC到底代表什么呢,我们从另外一个角度解释AUC

时间序列的蒙特卡罗交叉验证

交叉验证应用于时间序列需要注意是要防止泄漏和获得可靠的性能估计本文将介绍蒙特卡洛交叉验证。这是一种流行的TimeSeriesSplits方法的替代方法。

基于Vision Transformers的文档理解简介

文档理解是从pdf、图像和Word文档中提取关键信息的技术。这篇文章的目标是提供一个文档理解模型的概述。

使用TensorFlow Probability实现最大似然估计

TensorFlow Probability是一个构建在TensorFlow之上的Python库。它将我们的概率模型与现代硬件(例如GPU)上的深度学习结合起来。

NeurIPS 2022-10大主题、50篇论文总结

2672篇主要论文,63场研讨会,7场受邀演讲,包括语言模型、脑启发研究、扩散模型、图神经网络……NeurIPS包含了世界级的AI研究见解,本文将对NeurIPS 2022做一个全面的总结。

论文推荐:Rethinking Attention with Performers

重新思考的注意力机制,Performers是由谷歌,剑桥大学,DeepMind,和艾伦图灵研究所发布在2021 ICLR的论文已经超过500次引用

PyTorch中学习率调度器可视化介绍

学习率调度器有很多个,并且我们还可以自定义调度器。本文将介绍PyTorch中不同的预定义学习率调度器如何在训练期间调整学习率

基于SARIMA、XGBoost和CNN-LSTM的时间序列预测对比

本文将讨论通过使用假设测试、特征工程、时间序列建模方法等从数据集中获得有形价值的技术。我还将解决不同时间序列模型的数据泄漏和数据准备等问题,并且对常见的三种时间序列预测进行对比测试。

图像数据的特征工程

总结了常用的图像特征工程,裁剪,灰度化,RGB通道选择,强度阈值,边缘检测和颜色过滤器

7个有用的Pandas显示选项

为机器学习模型设置最佳阈值:0.5是二元分类的最佳阈值吗

在本文中,我将展示如何从二元分类器中选择最佳阈值。

支持向量机核技巧:10个常用的核函数总结

支持向量机是一种监督学习技术,主要用于分类,也可用于回归。它的关键概念是算法搜索最佳的可用于基于标记数据(训练数据)对新数据点进行分类的超平面。

个人信息

加入时间:2020-01-23

最后活动:20 小时前

发帖数:1801

回复数:1