深度学习Week9-YOLOv5-C3模块实现(Pytorch)

了解C3的结构,方便后续YOLOv5算法的学习。采用的数据集是天气识别的数据集。 输出:cuda图形变换,输出一下:用到类输出:{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}二、搭建YOLOv5-C3模型2.查看模型详情 统计模型参数量以及其他指

yolov5训练并生成rknn模型以及3588平台部署

瑞芯微RK3588上yolov5目标检测的部署。

yolov5s-5.0网络模型结构图

看了很多yolov5方面的东西,最近需要yolov5得模型结构图,但是网上的最多的是大白老师的,但是大白老师的yolov5得模型结构图不知道是哪个版本得,肯定不是5.0和6.0版本得。参考了大白老师得模型结构图和其他大佬的模型结构图,以及参考了yolov5得onnx。画出了以下得结构图,初次画不知道

为机器学习模型设置最佳阈值:0.5是二元分类的最佳阈值吗

在本文中,我将展示如何从二元分类器中选择最佳阈值。

SegNeXt: 重新思考基于卷积注意力的语义分割

重新设计基于CNN的语义分割,超越Transformer。

要点初见:开源AI绘画工具Stable Diffusion代码分析(文本转图像)、论文介绍(上)

本文深入分析Stable Diffusion所对应的论文High-Resolution Image Synthesis with Latent Diffusion Models,即《具有潜在扩散模型的高分辨率图像合成》,并深入Stable Diffusion项目代码,分析文本转图像部分的代码。

在本地PC运行 Stable Diffusion 2.0

这里我们将介绍如何在本地PC上尝试新版本

粒子群算法(PSO)优化的BP神经网络预测

BP神经网络是一种常见的多层前馈神经网络,本文通过粒子群算法(PSO)对BP神经网络的网络参数进行寻优,得到最优化的网络参数,并与未使用PSO的BP网络对同一测试样本进行预测,对比分析并突出PSO-BP的优越性。

从头开始进行CUDA编程:原子指令和互斥锁

本文是本系列的最后一部分,我们将讨论原子指令,它将允许我们从多个线程中安全地操作同一内存。我们还将学习如何利用这些操作来创建互斥锁

MSE = Bias² + Variance?什么是“好的”统计估计器

本文的目的并不是要证明这个公式,而是将他作为一个入口,让你了解统计学家如何以及为什么这样构建公式,以及我们如何判断是什么使某些估算器比其他估算器更好。

YOLO系列目标检测算法-YOLOv6

YOLO系列文章之YOLOv6。本文通过分析以往YOLO系列算法和最新技术,观察到几处需完善的地方,通过对网络设计、标签分配、损失函数、数据增强、工业便利化改进、量化和部署等进行修改,设计了EfficientRep、SCPStackRep Block、Rep-PAN、decoupled head等结

深度学习修炼(五)——基于pytorch神经网络模型进行气温预测

基于pytorch神经网络模型进行气温预测

使用PyTorch实现简单的AlphaZero的算法(3):神经网络架构和自学习

神经网络架构和训练、自学习、棋盘对称性、Playout Cap Randomization,结果可视化

华为开源自研AI框架昇思MindSpore应用实践:DCGAN生成漫画头像

华为开源自研AI框架昇思MindSpore教程:DCGAN生成漫画头像

Pytorch:手把手教你搭建简单的全连接网络

利用pytorch搭建简单全连接网络的步骤,适合初学者快速上手

YOLOv5训练结果分析

YOLOv5训练结果分析

目标检测算法——YOLOv5/YOLOv7改进之结合Swin Transformer V2(涨点神器)

目标检测算法——YOLOv5/YOLOv7结合Swin Transformer V2

BT - Unet:生物医学图像分割的自监督学习框架

BT-Unet采用Barlow twin方法对U-Net模型的编码器进行无监督的预训练减少冗余信息,以学习数据表示。之后,对完整网络进行微调以执行实际的分割。

Pytorch文档解读|torch.nn.MultiheadAttention的使用和参数解析

整体称为一个单注意力头,因为运算结束后只对每个输入产生一个输出结果,一般在网络中,输出可以被称为网络提取的特征,那我们肯定希望提取多种特征,[ 比如说我输入是一个修狗狗图片的向量序列,我肯定希望网络提取到特征有形状、颜色、纹理等等,所以单次注意肯定是不够的 ]因为是拼接而成的,所以每个单注意力头其实

使用HuggingFace实现 DiffEdit论文的掩码引导语义图像编辑

在本文中,我们将实现Meta AI和Sorbonne Universite的研究人员最近发表的一篇名为DIFFEDIT的论文。对于那些熟悉稳定扩散过程或者想了解DiffEdit是如何工作的人来说,这篇文章将对你有所帮助。