SE注意力机制

卷积神经网络(CNN)的核心构建块是卷积算子,它使网络能够通过融合每个层的局部感受野内的空间和通道信息来构建信息特征。大量的先前研究已经调查了这种关系的空间成分,试图通过增强整个特征层次的空间编码质量来增强CNN的代表能力。在这项工作中,我们转而关注信道关系,并提出了一种新的架构单元,我们称之为“挤

深度学习之wandb的基本使用

在深度学习训练网络的过程中,由于网络训练过程时间长,不可能一直关注训练中的每一轮结果,因此我们需要将训练过程中的结果可视化,留作后续的查看,从而确定训练过程是否出错。因此,我们需要使用到可视化工具,常用的几种可视化工具有:`wandb`(在线可视化)、`tensorboard`、这里主要介绍`wan

全网最全极限学习机(ELM)及其变种的开源代码分享

愿之称为全网最全的开源极限学习机(ELM)及其变种的开源代码分享~

yolov5修改骨干网络-使用自己搭建的网络-以efficientnetv2为例

efficientnet则是通过NAS搜索,同时增加width、depth以及resolution,使网络结构达到最优。下表为EfficientNet-B0的网络框架(B1-B7就是在B0的基础上修改Resolution,Channels以及Layers),可以看出网络总共分成了9个Stage。第一

stable diffusion 2.0本地部署和微调

今天我们来围绕着AUTOMATIC1111的stable-diffusion-webui介绍如何将stable diffusion 2.0 部署到本地,还有在哪里下载基本模型和微调。

vit的cam和注意力图: VIT模型的可解释性

VIT的热力图怎么画

【目标检测】YOLOv5模型从大变小,发生了什么?

记录一个实验小问题

【达摩院OpenVI】AIGC技术在图像超分上的创新应用

随着扩散模型DiffusionModel在理论和实践中的有效性得到越来越多的验证,在大数据、大模型的加持下,多模态学习发展如火如荼,促成了当今AIGC的火爆。同时以此为基础的视觉增强底层任务,也带来了一些突破性成果。今天重点给大家展示下,扩散模型在图像超分辨率这方面的新的应用,展现出其超过GAN的生

NLP关系抽取和事件抽取

关系抽取又称实体关系抽取,以实体识别为前提,在实体识别之后,判断给定文本中的任意两个实体是否构成事先定义好的关系,是文本内容理解的重要支撑技术之一,对于问答系统,智能客服和语义搜索等应用都十分重要。当前深度学习方法在关系抽取任务上取得了很好的效果,这是由于深度学习可以自动抽取文本特征。深度学习做关系

光流估计(三) PWC-Net 模型介绍

PWC-Net 的网络模型在由提出,发表文章为与FlowNet2.0模型相比,PWCNet的大小缩小了17倍,训练成本更低且精确度稳定。此外,它在Sintel数据集(1024×436)图像上的运行速度大约为35 fps,是光流估计深度学习中非常基础且具有重要意义的一个网络模型。FlowNet2.0

你升级GPT-4了吗?,如何申请GPT-4 API?最全攻略

如何申请GPT-4 API?必须有ChatGPT plus 会员,才能调用GPT-4 API

顶会查找论文的网址和检索方法

顶会的论文集:https://openaccess.thecvf.com/menu。dblp.org官网下载会议中的论文: https://dblp.org/论文下载网址:https://arxiv.org/指定论文来自哪个会议。

【深度学习基础】卷积是如何计算的

卷积操作其实就是每次取一个特定大小的矩阵,然后将其对输入矩阵依次扫描并进行内积的运算过程。

Stable Diffusion的入门介绍和使用教程

Stable Diffusion是一个文本到图像的潜在扩散模型,由CompVis、Stability AI和LAION的研究人员和工程师创建。它使用来自LAION-5B数据库子集的512x512图像进行训练。使用这个模型,可以生成包括人脸在内的任何图像,因为有开源的预训练模型,所以我们也可以在自己的

轨迹预测论文解读系列——几种经典的网络

人体轨迹预测在现实场景有着极具挑战且有着重要的应用,例如人机交互的问题,自动驾驶汽车的感知能力。如何对人与人之间的交互进行建模是今天介绍的三种方法之间的主要区别。从方法和结果来看,我认为相邻人之间的交互和人于环境的交互也是在之后工作值得探讨的方向。...

Stable Diffusion加chilloutmixni真人图片生成模型,AI绘图杀疯了

Stable Diffusion是一种扩散模型,可以经过训练,使用文本进行图片的生成任务,很多基于Stable Diffusion模型的训练模型已经发布,最近比较火的便是chilloutmixni(一个真人图片生成模型)与lora模型(一种风格模型),2种模型可以搭配使用,由于Stable Diff

机器学习深度学习数据集大汇总

本文汇总了NLP 和 CV领域主流的数据集并提供了介绍。

AI自主图像生成 之 stable-diffusion—运行效果展示

这几天跑省外出差被隔离在酒店,不过随身带了个主机和显示器(笔记本太差跑不了项目程序,只能随身带主机,一言难尽…),正巧又刷到stable-diffusion开源的消息,现在就来试试搭建这个试试水。硬件环境:显卡3060 12G显存,内存32G 主要就这两,cpu没太大要求,除非你想用cpu跑深度学习

[九]深度学习Pytorch-transforms图像增强(剪裁、翻转、旋转)

深度学习Pytorch-transforms图像增强(剪裁、翻转、旋转)

图像风格迁移 CycleGAN原理

CycleGAN是一种很方便使用的用于进行图像风格转换的模型。它的一大优势就在于不需要成对的数据集就可以进行训练。比如我们只需要随便一大堆真人图像和随便另一大堆动漫图像,就可以训练出这两类风格互相转换的模型。 CycleGAN进行风格转换的原理是这样的:在CycleGAN模型中有两个生成器和两个判别