机器学习线性回归——实验报告

机器学习实验报告3:线性回归

机器学习强基计划1-4:从协方差的角度详解线性判别分析原理+Python实现

线性判别分析是一种将样本投影到低维空间进行分类的方法,本文从协方差的物理意义出发探索LDA算法的物理意义和算法原理,并给出Python实现

逻辑回归(Logistic Regression)原理及其应用

本内容主要从逻辑回归应用场景、逻辑回归原理、逻辑回归应用案例,主要是癌症分类预测,还有分类评估方法,主要包含精确率、召回率、F1-score、AUC曲线和ROC指标。

(跨模态)AI作画——使用stable-diffusion生成图片

自从DallE问世以来,AI绘画越来越收到关注,从最初只能画出某些特征,到越来越逼近真实图片,并且可以利用prompt来指导生成图片的风格。前不久,stable-diffusion的v1-4版本终于开源,本文主要面向不熟悉huggingface的同学,介绍一下stable-diffusion如何使用

堪称经典,一个非常适合初学者的机器学习实战案例

哈喽,大家好。今天给大家介绍一个非常适合新手入门的机器学习实战案例。这是一个房价预测的案例,来源于 Kaggle 网站,是很多算法初学者的第一道竞赛题目。该案例有着解机器学习问题的完整流程,包含EDA、特征工程、模型训练、模型融合等。房价预测流程下面跟着我,来学习一下该案例。没有啰嗦的文字,没有多余

CUDA error: device-side assert triggered

原因1:模型大小不匹配在定义模型的最终全连接层时,我没有将 196(斯坦福汽车数据集的类总数)作为输出单元的数量,而是使用了 195。错误通常在您执行反向传播的行中识别。您的损失函数将比较模型的输出和数据集中该观察的标签。万一您对标签和输出感到困惑,请参阅下面我如何定义它们:原因2:损失函数输入错误

如何利用CloudCompare软件进行点云数据标注

目录一、CloudComparer软件介绍二、如何进行点云数据的人工“打标签”一、CloudComparer软件介绍CloudCompare是一个三维点云(网格)编辑和处理软件。最初,它被设计用来对稠密的三维点云进行直接比较。它依赖于一种特定的八叉树结构,在进行点云对比这类任务时具有出色的性能【1】

yolov5 代码内容解析

122122<div id="MathJax_Message" style="display: none;"></div><div id="MathJax_Message" style="display: none;"></div>离开了122

标准化与归一化

Standardization & Nomalisation

周志华《机器学习》第三章课后习题

目录3.1 试析在什么情形下式(3.2) 中不必考虑偏置项 b.3.2、试证明,对于参数w,对率回归的目标函数(3.18)是非凸的,但其对数似然函数(3.27)是凸的. 3.3、编程实现对率回归,并给出西瓜数据集3.0α上的结果.3.4 选择两个 UCI 数据集,比较 10 折交叉验证法和留一法所估

使用Pytorch框架自己制作做数据集进行图像分类(一)

网上有很多直接利用已有数据集(如MNIST, CIFAR-10等),直接进行机器学习,图像分类的教程。但如何自己制作数据集,为图像制作相应标签等的教程较少。故写本文,分享一下自己利用Pytorch框架制作数据集的方法技巧。开发环境:Pycharm + Python 3.7.9torch 1.10.2

【机器学习】9种回归算法及实例总结,建议学习收藏

我相信很多人跟我一样,学习机器学习和数据科学的第一个算法是线性回归,它简单易懂。由于其功能有限,它不太可能成为工作中的最佳选择。大多数情况下,线性回归被用作基线模型来评估和比较研究中的新方法。在处理实际问题时,你应该了解并尝试许多其他回归算法。一方面可以系统学习回归算法,另外一方面在面试中也常用到这

联邦学习(FL)+差分隐私(DP)

联邦学习+差分隐私(FL+DP)

机器学习及其MATLAB实现——BP神经网络

本文章为学习MATLAB机器学习时所整理的内容,本篇文章是该系列第一篇,介绍了BP神经网络的基本原理及其MATLAB实现所需的代码,并且增加了一些个人理解的内容。人工神经网络概述什么是人工神经网络?In machine learning and cognitive science, artifici

常用归一化/正则化层:InstanceNorm1d、InstanceNorm2d、

批量归一化与实例归一化的最大区别在于计算均值及方差的依据不同,实例归一化是对每个样本沿着通道方向独立对各个通道进行计算,而批量归一化则是对所有样本沿着batch的方向对各个通道分别进行计算。比如:输入特征图形状为:(2,3,256,512),表示有两个256×512的特征图,特征图通道数为3,假设为

深度学习论文精读[7]:nnUNet

相较于常规的自然图像,以UNet为代表的编解码网络在医学图像分割中应用更为广泛。常见的各类医学成像方式,包括计算机断层扫描(Computed Tomography, CT)、核磁共振成像(Magnetic Resonance Imaging, MRI)、超声成像(Ultrasound Imaging

2022年第二届长三角高校数学建模竞赛B题经验、论文、代码展示

2022年第二届长三角高校数学建模竞赛B题经验、论文、代码展示1、题目要求其中数据附件一数据(截图部分):附件二数据(部分截图):在这里插入代码片问题一到问题四的思路:针对问题一,对附件 1 中的 5 个表单的四个传感器数据进行分析,提取相关特征。研究发现 VMD 方法在可以避免模态混叠问题。VMD

【Python】Python寻找多维数组(numpy.array)中最大值的位置(行和列)

最近需要从热力图中找出关键点的坐标,也就是极大值的行和列。搜寻了网上的一些方法,在这里总结一下。使用numpy进行多维数组中最大值的行和列搜寻非常的灵活,有以下几种方法可供参考。二维数组方法一:np.max()函数 + np.where()函数如下图所示,x是一个 3×3 的二维np.array,首

[总结] 半监督学习方法: 一致性正则化(Consistency Regularization)

基于平滑假设和聚类假设, 具有不同标签的数据点在低密度区域分离, 并且相似的数据点具有相似的输出. 那么, 如果对一个未标记的数据应用实际的扰动, 其预测结果不应该发生显著变化, 也就是输出具有一致性.

CVPR 2022 | 最全25+主题方向、最新50篇GAN论文汇总

一顿午饭外卖,成为CV视觉前沿弄潮儿35个主题!ICCV 2021最全GAN论文汇总超110篇!CVPR 2021最全GAN论文梳理超100篇!CVPR 2020最全GAN论文梳理在最新的视觉顶会CVPR2022会议中,涌现出了大量基于生成对抗网络GAN的论文,广泛应用于各类视觉任务;下述论文已分类

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈