自编码器(Auto-Encoder)
一、自编码器原理自编码器算法属于自监督学习范畴,如果算法把x作为监督信号来学习,这里算法称为自监督学习(Self-supervised Learning)在监督学习中神经网络的功能:。是输入的特征向量长度,是网络输出的向量长度。对于分类问题,网络模型通过把长度为输入特征向量????变换到长度为的输出
【数据科学项目02】:NLP应用之垃圾短信/邮件检测(端到端的项目)
随着产品和服务在线消费的增加,消费者面临着收件箱中大量垃圾邮件的巨大问题,这些垃圾邮件要么是基于促销的,要么是欺诈性的。由于这个原因,一些非常重要的消息/电子邮件被当做垃圾短信处理了。在本文中,我们将创建一个 垃圾短信/邮件检测模型,该模型将使用朴素贝叶斯和自然语言处理(NLP) 来确定是否为垃圾短
SPSS软件实操——ARIMA时间序列预测模型
案例:基于ARIMA模型对螺纹钢价格预测——以南昌市为例
机器学习中的数据预处理方法与步骤
机器学习预处理详细方法
Python绘制loss曲线、准确率曲线
使用 python 绘制网络训练过程中的的 loss 曲线以及准确率变化曲线,这里的主要思想就时先把想要的损失值以及准确率值保存下来,保存到 .txt 文件中,待网络训练结束,我们再拿这存储的数据绘制各种曲线。其大致步骤为:数据读取与存储 - > loss曲线绘制 - > 准确率曲线绘制我们首先要得
RepVGG网络简介
VGG网络是2014年由牛津大学著名研究组VGG (Visual Geometry Group) 提出的。在2014到2016年(ResNet提出之前),VGG网络可以说是当时最火并被广泛应用的Backbone。后面由于各种新的网络提出,论精度VGG比不上ResNet,论速度和参数数量VGG比不过M
手把手调参最新 YOLOv7 模型 训练部分 - 最新版本(二)
YOLO科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数
机器学习分类算法之XGBoost(集成学习算法)
目录走进XGBoost什么是XGBoost?XGBoost树的定义XGBoost核心算法正则项:树的复杂程度XGBoost与GBDT有什么不同XGBoost需要注意的点XGBoost重要参数详解调参步骤及思想XGBoost代码案例相关性分析n_estimators(学习曲线)max_depth(学习
python中路径的三种写法+路径前符号含义
1、os.path.exists('E:/test')2、os.path.exists('E:\\test')3、os.path.exists(r'E:\test')在python的字符串中\是转义符,如果想让\保持原来的意思,可以加r避免转义。注:r的全称是raw string,即原始字符串常量,
深度学习常见名词概念:Sota、Benchmark、Baseline、端到端模型、迁移学习等的定义
深度学习:Sota的定义sota实际上就是State of the arts 的缩写,指的是在某一个领域做的Performance最好的model,一般就是指在一些benchmark的数据集上跑分非常高的那些模型。
一文带你了解推荐系统常用模型及框架
通过对用户之间的关系,用户对物品的评价反馈一起对信息进行筛选过滤,从而找到目标用户感兴趣的信息。用户—商品的评分矩阵(该矩阵很可能是稀疏的)用户\物品xxxxxx行向量表示每个用户的喜好,列向量表明每个物品的属性余弦相似度皮尔逊相关系数欧氏距离曼哈顿距离主要有基于用户的协同过滤与基于物品的协同过滤。
[机器学习、Spark]Spark MLlib分类
线性支持向量机在机器学习领域中是一种常见的判别方法,是一一个有监督学习模型,通常用来进行模式识别,分类以及回归分析。通过找到支持向量从而获得分类平面的方法,称为支持向量机。可以非常成功地处理回归(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广到预测和综合评价等领域,因此可应用于理
ROC曲线绘制(Python)
我看谁还不会用Python画出ROC曲线!!!
【机器学习】python实现吴恩达机器学习作业合集(含数据集)
目录1.0 实现线性回归预测2.0 线性可分logistic逻辑回归2.1 线性不可分logistic逻辑回归3.0 logistic逻辑回归手写多分类问题3.1 神经网络正向传播4.0 神经网络反向传播(BP算法)5.0 方差与偏差6.0 SVM支持向量机7.0 kmeans聚类7.1 PCA主成
YOLOV7开源代码讲解--训练参数解释
本文章是对yolov7开源代码中训练部分的参数进行解释,方便在训练中更直观的理解,可以更换的使用各个功能,完成最终的“炼丹”
机器学习【期末复习总结】——知识点和算法例题(详细整理)
【电子科技大学、机器学习课程】(期末复习、知识点和算法例题、详细总结)
机器学习期末题库
1.属于监督学习的机器学习算法是:贝叶斯分类器2.属于⽆监督学习的机器学习算法是:层次聚类3.⼆项式分布的共轭分布是:Beta分布4.多项式分布的共轭分布是:Dirichlet分布5.朴素贝叶斯分类器的特点是:假设样本各维属性独⽴6.下列⽅法没有考虑先验分布的是:最⼤似然估计7.对于正态密度的贝叶斯
python统计字符在文件中出现的次数
引言:本人从小白自学python,为了测试基础学习效果,增加一定的促进,想通过参加全国计算机等级考试二级python来检验基础学习情况。在学习过程中,会将该过程编写的python小程序题目在此发表,希望找到共同学习的人一起讨论,可能发表的有许多不是很完善的地方,请大家指正。后期学习路线,还会继续通过
阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)
阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测 完整代码!