使用 PyTorch 创建的多步时间序列预测的 Encoder-Decoder 模型
本文提供了一个用于解决 Kaggle 时间序列预测任务的 encoder-decoder 模型,并介绍了获得前 10% 结果所涉及的步骤。
Theta方法:一种时间序列分解与预测的简化方法
Theta方法整合了两个基本概念:分解时间序列和利用基本预测技术来估计未来的价值。
SOFTS: 时间序列预测的最新模型以及Python使用示例
这是2024年4月提出的新模型,采用集中策略来学习不同序列之间的交互,从而在多变量预测任务中获得最先进的性能。
Tiny Time Mixers (TTM)轻量级时间序列基础模型:无需注意力机制,并且在零样本预测方面表现出色
TTM是一个轻量级的,基于mlp的基础TS模型(≤1M参数),在零样本预测方面表现出色,甚至优于较大的SOTA模型。
ATFNet:长时间序列预测的自适应时频集成网络
ATFNet是一个深度学习模型,它结合了时间域和频域模块来捕获时间序列数据中的依赖关系。这是4月发布在arxiv上的论文,还包含了源代码。
时间序列预测:探索性数据分析和特征工程的实用指南
我在本文中我们将EDA总结为六个步骤:描述性统计、时间图、季节图、箱形图、时间序列分解、滞后分析。
循环编码:时间序列中周期性特征的一种常用编码方式
在深度学习或神经网络中,"循环编码"(Cyclical Encoding)是一种编码技术,其特点是能够捕捉输入或特征中的周期性或循环模式。
LSTM时间序列预测中的一个常见错误以及如何修正
当使用LSTM进行时间序列预测时,人们容易陷入一个常见的陷阱。
BiTCN:基于卷积网络的多元时间序列预测
在本文中,我们将详细介绍了BiTCN,提出的模型。通过利用两个时间卷积网络(TCN),该模型可以编码过去和未来的协变量,同时保持计算效率。
常用的时间序列分析方法总结和代码示例
在本文中将在分析时间序列时使用的常见的处理方法。这些方法可以帮助你获得有关数据本身的见解,为建模做好准备并且可以得出一些初步结论。
掌握时间序列特征工程:常用特征总结与 Feature-engine 的应用
本文将通过使用feature-engine来简化这些特征的提取
Moirai:Salesforce的时间序列预测基础模型
在本文中,我们将探索用于时间序列预测的 Salesforce 新发布的基础模型 Moirai。最后我们还对比Moirai 与其他两个基础模型之间的差异
Chronos: 将时间序列作为一种语言进行学习
这是一篇非常有意思的论文,它将时间序列分块并作为语言模型中的一个token来进行学习,并且得到了很好的效果。
Moment:又一个开源的时间序列基础模型
根据作者的介绍,MOMENT则是第一个开源,大型预训练时间序列模型家族。
PyTimeTK: 一个简单有效的时间序列分析库
我最近在Github上发现了一个刚刚发布不久的Python时间工具包PyTimeTK ,它可以帮我们简化时间序列分析的很多步骤。
Lag-Llama:第一个时间序列预测的开源基础模型介绍和性能测试
在本文中,我们将探讨Lag-Llama的架构、功能以及训练方式。还会将lagllama应用于一个预测项目中,并将其与其他深度学习方法Temporal Fusion Transformer (TFT) 和DeepAR进行性能比较。
使用Transformer 模型进行时间序列预测的Pytorch代码示例
本文可以作为学习使用Transformer 模型的时间序列预测的一个起点。
使用skforecast进行时间序列预测
在本文中,将介绍skforecast并演示了如何使用它在时间序列数据上生成预测。skforecast库的一个有价值的特性是它能够使用没有日期时间索引的数据进行训练和预测。
使用递归图 recurrence plot 表征时间序列
在本文中,我将展示如何使用递归图 Recurrence Plots 来描述不同类型的时间序列。
Python时间序列分析库介绍:statsmodels、tslearn、tssearch、tsfresh
在本文中,我们将介绍四个主要的Python库——statmodels、tslearn、tssearch和tsfresh——每个库都针对时间序列分析的不同方面进行了定制