使用 Temporal Fusion Transformer 进行时间序列预测

目前来看表格类的数据的处理还是树型的结构占据了主导地位。但是在时间序列预测中,深度学习神经网络是有可能超越传统技术的。

时间序列的数据分析(六):指数平滑预测法

本文主要介绍了指数平滑预测法的一些基本方法如简单指数平滑,趋势法、阻尼趋势法,季节性法。需要说明的是本文主要参考了并将书中原来用R语言实现的算法用Python实现了一下,在python代码中调用的指数平滑算法包主要来自于statsmodels包。通过对的学习并结合对statsmodels包的练习可以

使用时间序列数据预测《Apex英雄》的玩家活跃数据

在本文中我们使用《Apex英雄》中数据分析的玩家活动时间模式,并预测其增长或下降。

处理医学时间序列中缺失数据的3种方法

这些方法都是专为RNN设计,它们都经过了广泛的学术评估,而且十分的简单

几行 Python 代码就可以提取数百个时间序列特征

python的tsfresh包可以为时间序列数据生成标准的数百个通用特性。在本文中,我们将深入讨论tsfresh包的使用。

5个时间序列预测的深度学习模型对比总结:从模拟统计模型到可以预训练的无监督模型

时间序列预测在最近两年内发生了巨大的变化,尤其是在kaiming的MAE出现以后,现在时间序列的模型也可以用类似MAE的方法进行无监督的预训练

基于趋势和季节性的时间序列预测

分析时间序列的趋势和季节性,分解时间序列,实现预测模型

在时间序列中使用Word2Vec学习有意义的时间序列嵌入表示

在这篇文章中,介绍了众所周知的 Word2Vec 算法的推广,用于学习有价值的向量表示。我们在时间序列上下文中应用 Word2Vec,并展示了这种技术在非标准 NLP 应用程序中的有效性。整个过程可以很容易地集成到任何地方,并且很容易用于迁移学习任务。

一个简单实例解析移动平均模型 Moving-Average Models

本文将使用简单的说明性示例来解释移动平均模型(Arima [p,q]中的MA [Q])。

时间序列统计特征的详细解析

 根据对已有时间序列比赛的统计研究,发现数据规模不大的比赛任务中,依然使用的是特征工程+梯度提升树模型。而且特征工程依然是重中之重。所以特意换了一些时间对特征工程进行了详细的总结。主要包括两大类,一类是常用的(大家都使用的)基本特征,还有一类是Top选手使用的高级特征。为了方便比赛选手学习,将其概念

Pandas 中最常用的 7 个时间戳处理函数

数据科学和机器学习中时间序列分析的有用概念

HIST:微软最新发布的基于图的可以挖掘面向概念分类的共享信息的股票趋势预测框架

2022 年 1 月微软研究院的提出了一种新颖的股票趋势预测框架,可以充分挖掘该概念面向来自预定义概念和隐藏概念的共享信息

将梯度提升模型与 Prophet 相结合可以提升时间序列预测的效果

将Prophet的预测结果作为特征输入到 LightGBM 模型中进行时序的预测

用于时间序列异常检测的学生化残差( studentized residual)的理论和代码实现

学生化这个词其实就是studentized的中文直译,因为约定俗成了所以也没什办法,studentized就是把其他分布转换成t分布,所以其实 studentized residual 翻译为 化残差,要比 学生化残差 更自然,也更好理解

使用格拉姆角场(GAF)以将时间序列数据转换为图像

这篇文章将会详细介绍格拉姆角场 (Gramian Angular Field),并通过代码示例展示“如何将时间序列数据转换为图像”。

LazyProphet:使用 LightGBM 进行时间序列预测

但是当在单变量情况下使用增强树时,由于没有大量的外生特征可以利用,它的性能非常的糟糕。LazyProphet通过新的特征生成方法可以大大提高树型模型处理时序数据的性能

3种时间序列混合建模方法的效果对比和代码实现

本文中将讨论如何建立一个有效的混合预测器,并对常见混合方式进行对比和分析

4大类11种常见的时间序列预测方法总结和代码示例

本篇文章将总结时间序列预测方法,并将所有方法分类介绍并提供相应的python代码示例

使用时间特征使让机器学习模型更好地工作

在本文中,我将通过一个实际示例讨论如何从 DateTime 变量中提取新特征以提高机器学习模型的准确性。

使用图神经网络从稀疏数据中学习连续时间偏微分方程

这是一篇在2020年发表在ICLR的论文,论文使用图神经网络从稀疏数据中学习连续时间偏微分方程,文章提出的模型主要创新点是允许任意空间和时间离散化

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈