伪标签:用于深度神经网络的简单高效的半监督学习方法

未标记的数据由监督学习网络标记,即所谓的伪标记。然后使用标记数据和伪标记数据训练网络。

2022年必须要了解的20个开源NLP 库

在本文中,我列出了当今最常用的 NLP 库,并对其进行简要说明。它们在不同的用例中都有特定的优势和劣势,因此它们都可以作为专门从事 NLP 的优秀数据科学家备选方案。每个库的描述都是从它们的 GitHub 中提取的。

高斯函数、高斯积分和正态分布

本篇文章我们首先将研究高斯函数的一般定义是什么,然后将看一下高斯积分,其结果对于确定正态分布的归一化常数是非常必要的。最后我们将使用收集的信息理解,推导出正态分布方程。

通过强化学习和官方API制作《星露谷物语》的自动钓鱼mod

使用官方 Stardew Valley 的 modding API 用 C# 编写一个自动钓鱼的mod

RVN 一种新的聚类算法

RVN 的灵感来自一家家具公司的商业案例,由于每件家具都有不同的形状和大小,所以创建了可以考虑每个点大小的 RVN 算法

1月论文推荐:Hyper-Tune 满足大规模高效分布式自动超参数调整的 SOTA 架构

北京大学、苏黎世联邦理工学院和快手科技的研究团队提出了 Hyper-Tune,这是一种高效、健壮的分布式超参数调优框架

为神经网络选择正确的激活函数

在本篇文章中我们将讨论神经网络中常见的激活函数,并使用可视化技术帮助你了解激活函数的函数定义和不同的使用场景。

t 检验的 3 种常用方法及在 Python 中使用样例

本文将介绍 t 检验的 3 种变体以及何时使用它们以及如何在 Python 中运行它们。

5分钟 NLP系列—— 11 个词嵌入模型总结

TF-IDF, Word2Vec, GloVe, FastText, ELMO, CoVe, BERT, RoBERTa

使用图神经网络从稀疏数据中学习连续时间偏微分方程

这是一篇在2020年发表在ICLR的论文,论文使用图神经网络从稀疏数据中学习连续时间偏微分方程,文章提出的模型主要创新点是允许任意空间和时间离散化

深入了解 TabNet :架构详解和分类代码实现

Google发布的TabNet是一种针对于表格数据的神经网络,它通过类似于加性模型的顺序注意力机制(sequential attention mechanism)实现了instance-wise的特征选择,还通过encoder-decoder框架实现了自监督学习。

论文推荐:在早期训练阶段预测下游模型性能

22年1月的新论文提出了基于边缘动态系统的神经网络选择的新视角

特殊图像的色彩特征工程:非自然图像的颜色编码

在本文中,我们将探讨特征工程的不同方式(将原始颜色值进行展开)如何有助于提高卷积神经网络的分类性能。

多分类任务的混淆矩阵

今天我将讨论如何在多分类中使用混淆矩阵评估模型的性能。

2022 年 1 月推荐阅读的四篇深度学习论文

自举元学习到深度学习的时间序列预测,外推与泛化之间的关系与 Ridge Rider 探索多样化最优

使用 LSTM 进行多变量时间序列预测的保姆级教程

使用 LSTM 进行端到端时间序列预测的完整代码和详细解释。

个人信息

加入时间:2020-01-23

最后活动:5 小时前

发帖数:1929

回复数:1