Python中的魔法方法

python中的魔法方法是一些可以让你对类添加“魔法”的特殊方法,它们经常是两个下划线包围来命名的

使用PyTorch进行知识蒸馏的代码示例

在本文中,我们将探索知识蒸馏的概念,以及如何在PyTorch中实现它。

从另外一个角度解释AUC

AUC到底代表什么呢,我们从另外一个角度解释AUC

时间序列的蒙特卡罗交叉验证

交叉验证应用于时间序列需要注意是要防止泄漏和获得可靠的性能估计本文将介绍蒙特卡洛交叉验证。这是一种流行的TimeSeriesSplits方法的替代方法。

基于Vision Transformers的文档理解简介

文档理解是从pdf、图像和Word文档中提取关键信息的技术。这篇文章的目标是提供一个文档理解模型的概述。

使用TensorFlow Probability实现最大似然估计

TensorFlow Probability是一个构建在TensorFlow之上的Python库。它将我们的概率模型与现代硬件(例如GPU)上的深度学习结合起来。

NeurIPS 2022-10大主题、50篇论文总结

2672篇主要论文,63场研讨会,7场受邀演讲,包括语言模型、脑启发研究、扩散模型、图神经网络……NeurIPS包含了世界级的AI研究见解,本文将对NeurIPS 2022做一个全面的总结。

论文推荐:Rethinking Attention with Performers

重新思考的注意力机制,Performers是由谷歌,剑桥大学,DeepMind,和艾伦图灵研究所发布在2021 ICLR的论文已经超过500次引用

PyTorch中学习率调度器可视化介绍

学习率调度器有很多个,并且我们还可以自定义调度器。本文将介绍PyTorch中不同的预定义学习率调度器如何在训练期间调整学习率

基于SARIMA、XGBoost和CNN-LSTM的时间序列预测对比

本文将讨论通过使用假设测试、特征工程、时间序列建模方法等从数据集中获得有形价值的技术。我还将解决不同时间序列模型的数据泄漏和数据准备等问题,并且对常见的三种时间序列预测进行对比测试。

图像数据的特征工程

总结了常用的图像特征工程,裁剪,灰度化,RGB通道选择,强度阈值,边缘检测和颜色过滤器

7个有用的Pandas显示选项

为机器学习模型设置最佳阈值:0.5是二元分类的最佳阈值吗

在本文中,我将展示如何从二元分类器中选择最佳阈值。

支持向量机核技巧:10个常用的核函数总结

支持向量机是一种监督学习技术,主要用于分类,也可用于回归。它的关键概念是算法搜索最佳的可用于基于标记数据(训练数据)对新数据点进行分类的超平面。

在本地PC运行 Stable Diffusion 2.0

这里我们将介绍如何在本地PC上尝试新版本

多元时间序列特征工程的指南

使用Python根据汇总统计信息添加新特性,本文将告诉你如何计算几个时间序列中的滚动统计信息。将这些信息添加到解释变量中通常会获得更好的预测性能。

从头开始进行CUDA编程:原子指令和互斥锁

本文是本系列的最后一部分,我们将讨论原子指令,它将允许我们从多个线程中安全地操作同一内存。我们还将学习如何利用这些操作来创建互斥锁

用强化学习玩《超级马里奥》

Pytorch的一个强化的学习教程( Train a Mario-playing RL Agent)使用超级玛丽游戏来学习双Q网络(强化学习的一种类型)

MSE = Bias² + Variance?什么是“好的”统计估计器

本文的目的并不是要证明这个公式,而是将他作为一个入口,让你了解统计学家如何以及为什么这样构建公式,以及我们如何判断是什么使某些估算器比其他估算器更好。

使用PyTorch实现简单的AlphaZero的算法(3):神经网络架构和自学习

神经网络架构和训练、自学习、棋盘对称性、Playout Cap Randomization,结果可视化

个人信息

加入时间:2020-01-23

最后活动:18 小时前

发帖数:2175

回复数:1