猿创征文|【深度学习前沿应用】文本生成

【自然语言处理(NLP)】文本生成,基于百度飞桨开发,参考于《机器学习实践》所作。

【NLP屠夫系列】- NER之实战BILSTM

【NLP屠夫系列】- NER之实战BILSTM了解什么是命名实体识别了解命名实体识别的作用了解命名实体识别常用方法- 了解医学文本特征

BERT模型解析

BERT模型的提出对于NLP预训练的效果有了较大提升,在ELMo模型的基础上使用了Self-Attention作为文本特征的挖掘,同时避免了GPT模型中的单向语言模型,充分利用文本中的上下文特征。

【自然语言处理(NLP)】基于ERNIE语言模型的文本语义匹配

【自然语言处理(NLP)】基于ERNIE语言模型的文本语义匹配,基于百度飞桨开发,参考于《自然语言处理实践》所作。

【NLP】AI相关比赛汇总(2022)

主要查找的是国内的一些比赛平台。以往举办的一些平台不能够访问的,或者比赛列表中近年来没有相关比赛的就没有放上去。读者可以根据自己的喜好选择合适自己的平台进行学习和演练,好运哦。当然,以上平台也是从互联网中查找的也不一定全面,欢迎补充。......

【NLP】一文了解词性标注CRF模型

NLP 自然语言之一文了解词性标注CRF模型

【数据科学项目02】:NLP应用之垃圾短信/邮件检测(端到端的项目)

随着产品和服务在线消费的增加,消费者面临着收件箱中大量垃圾邮件的巨大问题,这些垃圾邮件要么是基于促销的,要么是欺诈性的。由于这个原因,一些非常重要的消息/电子邮件被当做垃圾短信处理了。在本文中,我们将创建一个 垃圾短信/邮件检测模型,该模型将使用朴素贝叶斯和自然语言处理(NLP) 来确定是否为垃圾短

【自然语言处理(NLP)】基于循环神经网络实现情感分类

【自然语言处理(NLP)】基于循环神经网络实现情感分类,基于百度飞桨开发,参考于《机器学习实践》所作。

使用Dask,SBERT SPECTRE和Milvus构建自己的ARXIV论文相似性搜索引擎

通过矢量相似性搜索,可以在〜50ms内响应〜640K论文上的语义搜索查询

【自然语言处理(NLP)】文本数据处理实践

【自然语言处理(NLP)】文本数据处理实践,基于百度飞桨开发,参考于《机器学习实践》所作。

【NLP】Transformer理论解读

Attention Is All You Need

代码的表示学习:CodeBERT及其他相关模型介绍

本文将对论文进行简要概述,并使用一个例子展示如何使用。在最后除了CodeBert以外,还整理了最近一些关于他的研究之上的衍生模型。

5分钟NLP:Python文本生成的Beam Search解码

Beam Search不取每个标记本身的绝对概率,而是考虑每个标记的所有可能扩展。然后根据其对数概率选择最合适的标记序列。

2022搜狐校园NLP算法大赛情感分析第一名方案理解和复现

2022搜狐校园NLP算法大赛情感分析第一名方案理解,代码复现和效果对比

图解BERT、ELMo(NLP中的迁移学习)| The Illustrated BERT, ELMo, and co.

2018年是NLP模型发展的转折点。我们不断探索单词和句子的表示方法,以求能最好地捕捉其中潜在的语义和关系。此外,NLP领域已经提出了一些功能强大的组件,你可以免费下载,并在自己的模型和pipeline中使用它们(这被称为NLP领域的ImageNet时刻,类似的发展在几年前也是这么加速计算机视觉领域

5分钟NLP-知识问答(KBQA)两种主流方法:基于语义解析和基于信息检索的方法介绍

基于知识的问答是以知识库为认知源,在知识库的基础上回答自然语言问题。在本文中讲介绍知识问答两种主要方法。

使用 CLIP 对没有标记的图像进行零样本无监督分类

OpenAI 提出的CLIP模型,不需要标签并且在 ImageNet 上实现 76.2% 的测试准确率,在这篇文章中将概述 CLIP 的信息,如何使用它来最大程度地减少对传统的监督数据的依赖,以及它对深度学习从业者的影响。

Block Recurrent Transformer:结合了LSTM和Transformer优点的强大模型

2022年3月Google研究团队和瑞士AI实验室IDSIA提出了一种新的架构,称为Block Recurrent Transformer 从名字中就能看到,这是一个新型的Transformer模型,它利用了lstm的递归机制,在长期序列的建模任务中实现了显著改进。

NLP下的bert模型的一些学习

学习NLP过程中的一些自己的笔记

详解机器翻译任务中的BLEU

BLEU的计算和Python的简单实现