【毕业设计】深度学习YOLO抽烟行为检测 - python opencv

YOLO系列是基于深度学习的回归方法。该系列陆续诞生出YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5。YOLOv5算法,它是一种单阶段目标检测的算法,该算法可以根据落地要求灵活地通过chaneel和layer的控制因子来配置和调节模型,所以在比赛和落地中应用比较多。同时它有YO

将特征转换为正态分布的一种方法示例

正态(高斯)分布在机器学习中起着核心作用,线性回归模型中要假设随机误差等方差并且服从正态分布,如果变量服从正态分布,那么更容易建立理论结果。

手把手带你调参最新 YOLOv7 模型 (最新版本)(一)

YOLO科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数

基于CNN卷积神经网络的TensorFlow+Keras深度学习的人脸识别

在上一篇博客中,利用CNN卷积神经网络的TensorFlow+Keras深度学习搭建了人脸模型:《基于CNN卷积神经网络的TensorFlow+Keras深度学习搭建人脸模型]》,本篇博客将继续利用CNN卷积神经网络的TensorFlow+Keras深度学习实现人脸识别...

Pytorch中获取模型摘要的3种方法

在pytorch中获取模型的可训练和不可训练的参数,层名称,内核大小和数量。

点云深度学习——pyqt调用配准网络DCP模型

点云深度学习——pyqt调用配准网络DCP模型

论文推荐:使用带掩码的孪生网络进行自监督学习

本篇文章将介绍Masked Siamese Networks (MSN),这是另一种用于学习图像表示的自监督学习框架。MSN 在 ImageNet-1K 上的线性评估方面优于 MAE 和其他模型

为什么Adam 不是默认的优化算法?

本文这并不是否定自适应梯度方法在神经网络框架中的学习参数的贡献。而是希望能够在使用Adam的同时实验SGD和其他非自适应梯度方法

卷积神经网络CNN实现mnist手写数字识别

卷积神经网络CNN实现mnist手写数字识别

【深度学习】基于卷积神经网络(tensorflow)的人脸识别项目(四)

实现一个基于界面化的一个人脸识别。本篇主要是实现第四步。最后一篇咯 1. 首先需要收集数据,我的想法是通过OpenCV调用摄像头进行收集人脸照片。 2. 然后进行预处理,主要是对对数据集分类,训练集、验证集、测试集。选取合适的参数,例如损失函数。图像灰度化、归一化等等操作。 3. 开始训练模型,提前

RepVGG :让卷积再次伟大

一个经典的卷积神经网络(ConvNet),VGG [31],在图像识别方面取得了巨大的成功,其简单的架构由一堆 conv、ReLU 和 pooling 组成。随着 Inception [33, 34, 32, 19]、ResNet [12] 和 DenseNet [17],许多研究兴趣转移到精心设计

使用Pytorch手写ViT — VisionTransformer

本篇文章使用 Pytorch 中实现 Vision Transformer,通过我们自己的手动实现可以更好的理解ViT的架构

【深度学习实践(八)】生成对抗网络(GAN)之手写数字生成

【深度学习实践(八)】生成对抗网络(GAN)之手写数字生成

刘二大人 PyTorch深度学习实践 笔记 P7 处理多维特征的输入

刘二大人 PyTorch深度学习实践 笔记 P7 处理多维特征的输入

【深度学习】5-从计算图直观认识“激活函数不以零为中心导致收敛变慢”

关于激活函数以零为中心问题的较直观解释,并于参数值全相同的问题做了对比。

数学建模(三):预测

数学建模(三):预测

【深度学习】SVM与百度飞桨

SVM和KNN都是对分类数据点进行距离的计算,距离计算公式(二范数)是np.sqare (np.pow ( (x1-x2),2)),即根号下两点差的平方。SVM要比KNN分类效果一般要好,并且速度要快。

基于YOLOV7的openpose人体姿态检测识别,FPS可以达到“较高”的效果

前不久yolov7(原yolov4团队)在yolov6(美团)开源不到两周的时间也更新了,如下图所示,yolov7效果比前面的版本确实牛逼,在精度相同的情况下,速度上面提升了一大截,但是这是在比较好的设备上面;YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 G

【深度学习】基于卷积神经网络(tensorflow)的人脸识别项目(二)

实现一个基于界面化的一个人脸识别。本篇主要是实现第二步。 1. 首先需要收集数据,我的想法是通过OpenCV调用摄像头进行收集人脸照片。 2. 然后进行预处理,主要是对对数据集分类,训练集、验证集、测试集。选取合适的参数,例如损失函数。图像灰度化、归一化等等操作。 3. 开始训练模型,提前创建好标签

10个常用的损失函数解释以及Python代码实现

理解机器学习中的损失函数

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈