丢弃法Dropout(Pytorch)
介绍了dropout(丢弃法),以及PyTorch的从零实现和调API实现
计算复杂度
计算复杂度的简单理解
图卷积神经网络GCN的一些理解以及DGL代码实例的一些讲解
近些年图神经网络十分火热,因为图数据结构其实在我们的现实生活中更常见,例如分子结构、人的社交关系、语言结构等等。NLP中的句法树、依存树就是一种特殊的图,因此,图神经网络的学习也是必不可少的。GCN是图卷积神经网络,初期研究者为了从数学上严谨的推导该公式是有效的,所以会涉及到诸如傅里叶变换,拉普拉斯
深度学习参数初始化(一)Xavier初始化 含代码
Xavier初始化也称为Glorot初始化,因为发明人为Xavier Glorot。Xavier initialization是 Glorot 等人为了解决随机初始化的问题提出来的另一种初始化方法,他们的思想就是尽可能的让输入和输出服从相同的分布,这样就能够避免后面层的激活函数的输出值趋向于0。..
最新版YOLOv6训练自己的数据集(超详细完整版!)
接着上篇文章继续写,本篇文章讲如何训练自己的数据集。从官网下载YOLOv6源码:meituan/YOLOv6: YOLOv6: a single-stage object detection framework dedicated to industrial applications. (githu
零样本和少样本学习
在本篇文章中,我们将讨论机器学习和深度学习的不同领域中的一个热门话题:零样本和少样本学习(Zero and Few Shot learning),它们在自然语言处理到计算机视觉中都有不同的应用场景。
YOLOv6算法新鲜出炉--训练自己数据集过程
YOLOv6算法背景:YOLOv6 是美团视觉智能部研发的一款目标检测框架,致力于工业应用。本框架同时专注于检测的精度和推理效率,在工业界常用的尺寸模型中:YOLOv6-nano 在 COCO 上精度可达 35.0% AP,在 T4 上推理速度可达 1242 FPS;YOLOv6-s 在 COCO
CS231n-2022 Module1: 神经网络要点概述(2)
本文编译自斯坦福大学的CS231n课程(2022) Module1课程中神经网络部分的内容: 【1】Neural Networks Part 2: Setting up the Data and the Loss To be added.
Yolov5网络修改教程(将backbone修改为EfficientNet、MobileNet3、RegNet等)
在我的本科毕业论文中,我使用了Yolov5,并尝试对其更改。可以对Yolov5进行一定程度的定制化修改,例如更轻量级的Yolov5-MobileNetv3 或者比Yolov5s更好的(存疑,没有跑过大数据集,可自己实验)Yolov5-EfficientNet。......
深度学习---三好学生各成绩所占权重问题(2)
深度学习---三好学生各成绩所占权重问题,训练神经网络
爆火的Transformer,到底火在哪?
与传统的 Soft Attention相比, Self-Attention 可有效缩短远距离依赖特征之间的距离,更容易捕获时间序列数据中相互依赖的特征,在大多数实际问题中,Self-Attention 更被研究者们所青睐,并具有更加优异的实际表现。完全不依赖于RNN结构仅利用Attention机制的
Pytorch(二) —— 激活函数、损失函数及其梯度
δ(x)=11+e−xδ′(x)=δ(1−δ)\delta(x)=\frac{1}{1+e^{-x}}\\\delta'(x)=\delta(1-\delta)δ(x)=1+e−x1δ′(x)=δ(1−δ)tanh(x)=ex−e−xex+e−x∂tanh(x)∂x=1−tanh2(x)tanh(
【深度学习】(2) Transformer 网络解析,代码复现,附Pytorch完整代码
今天和各位分享一下如何使用 Pytorch 构建 Transformer 模型。本文的重点在代码复现,部分知识点介绍的不多,我会在之后的四篇博文中详细介绍 Encoder,Decoder,(Mask)MutiHeadAttention,以及实战案例。之前我也介绍过 Vision Tranformer
时间序列预测系列文章总结(代码使用方法)
时间序列预测系列文章总结(代码使用方法)
Keras深度学习实战(12)——面部特征点检测
面部关键点的定位通常是许多面部分析方法和算法中的关键步骤。在本节中,我们介绍了如何通过训练卷积神经网络来检测面部的关键点,首先通过预训练模型提取特征,然后利用微调模型预测图像中人物的面部关键点。......
YOLO系列梳理(九)初尝新鲜出炉的YOLOv6
近日,美团视觉智能部开源了YOLOv6的框架。YOLOv4、YOLOv5更多是注重于数据增强,而对网络结构的改动则比较少。和YOLOv4、YOLOv5不同,YOLOv6对网络结构的改动还是蛮大的。
YOLOv6又快又准的目标检测框架 已开源
YOLOv6又快又准的目标检测框架 已开源
100+数据科学面试问题和答案总结 - 机器学习和深度学习
来自Amazon,谷歌,Meta, Microsoft等的面试问题,本文接着昨天的文章整理了机器学习和深度学习的问题
期末复习【机器学习】
期末复习【机器学习】
基于BP神经网络识别手写字体MINST字符集
问题描述: 本次实验所要解决的问题是使用人工神经网络实现识别手写字体。实验采用MINST手写字符集作为识别对象。其中60000张作为训练集,剩余10000张作为测试集。实验采用python语言进行编程,使用到一些python的第三方库。使用的神经网络模型为BP神经网络,这是一种按照误差逆向传播算法