二、机器学习基础6
计算图导数计算是反向传播,利用链式法则和隐式函数求导。线性判别分析(LDA )思想总结线性判别分析(Linear DiscriminantAnalysis,LDA)是一种经典的降维方法。和 PCA 不考虑样本类别输出的无监督降维技术不同,LDA 是一种监督学习的降维技术,数据集的每个样本有类别输出。
NLP 进行文本摘要的三种策略代码实现和对比:TextRank vs Seq2Seq vs BART
本文将使用 Python 实现和对比解释 NLP中的3 种不同文本摘要策略:老式的 TextRank(使用 gensim)、著名的 Seq2Seq(使基于 tensorflow)和最前沿的 BART(使用Transformers )
舍友居然偷偷在看这篇文章入门【机器学习】
kiko力求用最通俗的语言和实战案例来解释机器学习的相关内容!
从零到一实现神经网络(python):二
由单层感知机中的信号传递机制过渡到神经网络中的信号传递机制,通过一个包含2个隐藏层的4层神经网络实现了前向信号传播,介绍了sigmoid激活函数以及输出层经常用于误差计算的softmax函数
【YOLOv5-6.x】通过设置可学习参数来结合BiFPN
文章目录前言修改common.py修改yolo.pyyolov5s-bifpn.yaml测试结果References前言在之前的这篇博客中,简要介绍了BiFPN的原理,以及YOLOv5作者如何结合BiFPN:【魔改YOLOv5-6.x(中)】:加入ACON激活函数、CBAM和CA注意力机制、加权双向
神经网络学习小记录70——Pytorch 使用Google Colab进行深度学习
神经网络学习小记录70——Pytorch 使用Colab进行深度学习学习前言什么是Google ColabColab官网利用Colab进行训练一、数据集与预训练权重的上传1、数据集的上传2、预训练权重的上传二、打开Colab并配置环境1、笔记本的创建2、环境的简单配置3、深度学习库的下载4、数据集的
自动化的机器学习:5个常用AutoML 框架介绍
AutoML 可以为预测建模问题自动找到数据准备、模型和模型超参数的最佳组合,本文整理了5个最常见且被熟知的开源AutoML 框架。
Keras深度学习实战(1)——神经网络基础与模型训练过程详解
神经网络是一种性能强大的学习算法,其灵感来自大脑的运作方式。类似于神经元在大脑中彼此连接的方式,神经网络获取输入后,通过某些函数在网络中进行传递输入信息,连接在其后的一些神经元会被激活,从而产生输出。本文主要介绍神经网络中重要的基础知识,然后使用 Python 从零开始构建神经网络的训练流程,包括前
一步步教你查看cuda和cudnn版本
1.查看cuda版本win+R+enter回车,再输入cmd进入命令行,再输入nvcc --version或者输入nvcc -V即可得到cuda的版本,如图我的cuda版本是10.2查看cudnn版本进入目录查看cudnn_version.h文件一般放在:C:\Program Files\NVIDI
睿智的目标检测57——Tensorflow2 搭建YoloV5目标检测平台
睿智的目标检测57——Tensorflow2 搭建YoloV5目标检测平台学习前言源码下载YoloV5改进的部分(不完全)YoloV5实现思路一、整体结构解析二、网络结构解析1、主干网络Backbone介绍2、构建FPN特征金字塔进行加强特征提取3、利用Yolo Head获得预测结果三、预测结果的解
目标检测算法——YOLOv5将IOU Loss替换为EIOU Loss
将YOLOv5中的锚框损失函数替换为EIOU Loss,性能远优于原IOU、DIOU以及CIOU等,测试自身数据集发现涨点明显!
目标检测算法——YOLOv5结合BiFPN
将YOLOv5中的PANet层修改为EfficientDet-BiFPN,实现自上而下与自下而上的深浅层特征双向融合,明显提升YOLOv5算法检测精度。
2022 年 4 月 10篇 ML 研究论文推荐
Google 的 5400 亿参数 PaLM、Pathways、Kubric、Tensor Programs、Bootstrapping Reasoning With Reasoning、Sparse all-MLP 架构
深度学习之循环神经网络(RNN)
人工智能之循环神经网络(RNN)
分类使用Pytorch实现Grad-CAM并绘制热力图
import osimport numpy as npimport torchfrom PIL import Imageimport matplotlib.pyplot as pltfrom torchvision import modelsfrom torchvision import trans
掌握神经网络的法宝(一)
上一章的介绍,相信大家对于神经网络的框架模式有了一定的了解,而这一章我准备来给大家介绍一下掌握神经网络所需的数学基础。
多任务学习中的网络架构和梯度归一化
多任务学习(Multi-task learning, MTL),旨在用其他相关任务来提升主要任务的泛化能力,多个任务共享一个结构并在一次正向传递中产生多个推理。
Mask R-CNN网络详解
Mask R-CNN是2017年发表的文章,一作是何恺明大神,没错就是那个男人,除此之外还有Faster R-CNN系列的大神`Ross Girshick`,可以说是强强联合。该论文也获得了ICCV 2017的最佳论文奖(`Marr Prize`)。并且该网络提出后,又霸榜了MS COCO的各项任务
使用分布外数据去除不需要的特征贡献,提高模型的稳健性
分布外数据增强训练可以提高 DNN 的准确性和效率,通过抗性训练可以让 DNN 更加健壮,让模型更不容易受到扰动的影响。
基于Pytorch的强化学习(DQN)之 Baseline 基本概念
目录1. 引言2. 数学推导2.1 引理2.2 改进的策略梯度2.3 蒙特卡罗模拟3. baseline的选择1. 引言我们前面讲过策略梯度下降算法,现在来介绍一种加快收敛速度的方法:设置Baseline。2. 数学推导我们之前推导过状态价值函数梯度的公式,以下证明源于这个公式。2.1 引理我们先证