三、深度学习基础2(前、反向传播;超参数)
前向传播与反向传播前向传播反向传播神经网络的输出、卷积神经网络输出值以及Pooling 层输出值(主要作用是下采样)过程皆为比较简单的基础知识,在此不作详细赘述。超参数超参数:比如算法中的 learning rate (学习率)、iterations(梯度下降法循环的数量)、(隐藏层数目)、(隐藏层
深度学习基础 初学者版
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、过拟合与欠拟合,防止过拟合方法。 二、使用步骤 1.引入库 2.读入数据 总结前言首先!博主目前大一,写出来的东西水平很低。我写博客的目的只是为了让同是大一大二的学生们,入门这个领域的时候变得稍微轻松一点点。这篇博
基于pytorch平台实现对MNIST数据集的分类分析(前馈神经网络、softmax)基础版
基于pytorch平台实现对MNIST数据集的分类分析(前馈神经网络、softmax)基础版
三、深度学习基础1(构成、模型)
神经网络组成(输入层、隐藏层、输出层)最简单的神经网络:感知机复杂一些的感知机由简单的感知机单元组合而成:Sigmoid 单元感知机单元的输出只有 0 和 1,实际情况中,更多的输出类别不止 0 和 1,而是[0,1]上的概率值,这时候就需要 sigmoid 函数把任意实数映射到[0,1]上。sig
学习笔记:深度学习(5)——词向量的相关概念
开始学习Bert。
从零到一实现神经网络(六):误差反向传播算法更新网络权重
误差反向传播算法原理,误差反向传播更新权重参数,三层神经网络实现
5分钟NLP:Text-To-Text Transfer Transformer (T5)统一的文本到文本任务模型
本文将解释如下术语:T5,C4,Unified Text-to-Text Tasks
图像预训练模型的起源解说和使用示例
这篇文章简要介绍了图像预训练模型过去的演变,并总结了现在的一些热门话题。
Keras深度学习实战(2)——使用Keras构建神经网络
Keras 是用 Python 编写的高级神经网络 API,它的核心思想在于实现快速实验,该库提供了很多实用工具,可以简化构建复杂神经网络的过程。在本节中,我们将使用 Keras 库构建神经网络,感受 Keras 快速模型构建的特性。
二、机器学习基础11(点估计)
点估计:用实际样本的一个指标来估计总体的一个指标的一种估计方法。点估计举例:比如说,我们想要了解中国人的平均身高,那么在大街上随便找了一个人,通过测量这个人的身高来估计中国人的平均身高水平;或者在淘宝上买东西的时候随便一次买到假货就说淘宝上都是假货等;这些都属于点估计。点估计主要思想:在样本数据中得
基于深度学习的人脸性别识别系统(含UI界面,Python代码)
摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面。在界面中可以选择人脸图片、视频进行检测识别,也可通过电脑连接的摄像头设备进行实时识别人脸性别;可对图像中存在的多张人脸进行性别识别,可选
使用 Python 实现一个简单的智能聊天机器人
Python100行代码实现简单的智能聊天机器人
XCTF-*CTF2022-Alice系列挑战write up
*CTF2022 Alice系列题目write up
python 深度学习环境安装(tensorflow-gpu)
本文主要通过Anaconda来配置tensorflow-gpu环境,介绍了如何新建虚拟环境,下载cuda,cudnn,tensorflow-gpu,以及判断是否安装成功,最后介绍了在pycharm中新建项目来配置虚拟环境。
深度学习之30系显卡虚拟环境配置(100%成功,windows,英伟达30系显卡,torch版本1.7.1)
30系显卡配置深度学习所需要的虚拟环境非常麻烦,本文章整理了我个人安装虚拟环境的心得体会和经验,手把手教您配置好虚拟环境!
改善图形神经网络,提升GNN性能的三个技巧
本文总结了一些技巧来提高 GNN 模型的性能。
深度学习-用PyTorch实现面部形象分类(非常详细-适合初学者)
基于pytorch对面部形象分类,训练准确率99.97%,测试准确率96.76
SRCNN:基于深度学习的超分辨率开山之作回顾
本文提供了与SRCNN论文的总结和回顾,如果你对于图像的超分辨率感兴趣,一定要先阅读这篇论文,他可以说是所有基于深度学习的超分辨率模型的鼻祖
二、机器学习基础5(损失函数、梯度下降)
损失函数损失函数(Loss function)又叫做误差函数,用来衡量算法的运行情况.估量模型的预测值 f (x)与真实值 Y 的不一致程度,是一个非负实值函数,通常使用来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。常见的损失函数损失函数用
HIST:微软最新发布的基于图的可以挖掘面向概念分类的共享信息的股票趋势预测框架
2022 年 1 月微软研究院的提出了一种新颖的股票趋势预测框架,可以充分挖掘该概念面向来自预定义概念和隐藏概念的共享信息