使用Mamba和Qdrant数据库实现RAG的代码示例
我们今天来研究一下RAG、Mamba和Qdrant的协同工作,它们的有效组合保证了效率和可扩展性。
12个RAG常见痛点及解决方案
这里使用“痛点”而不是“失败点”,主要是因为我们总结的问题都有相应的建议解决方案。
10个Pandas的高级技巧
pandas是一个非常庞大的库,有许多尚未探索的实用方法。本文介绍的10各高级技巧可以帮你更有效地处理各种数据
UniMS-RAG:用于个性化对话的统一多源RAG框架
UniMS-RAG统一了计划、检索和阅读任务的训练过程,并将它们集成到一个综合框架中。
Langchain中改进RAG能力的3种常用的扩展查询方法
有多种方法可以提高检索增强生成(RAG)的能力,其中一种方法称为查询扩展。我们这里主要介绍在Langchain中常用的3种方法
论文推荐:大语言模型在金融领域的应用调查
这篇论文总结了现有LLM在金融领域的应用现状,推荐和金融相关或者有兴趣的朋友都看看
使用核模型高斯过程(KMGPs)进行数据建模
核模型高斯过程是机器学习和统计学中对传统高斯过程的一种扩展。要理解kmgp,首先掌握高斯过程的基础知识,然后了解核模型是如何发挥作用的。
2024年1月的论文推荐
又到月底了,在月初推荐论文的基础上又整理了10篇推荐阅读的论文
使用Transformer 模型进行时间序列预测的Pytorch代码示例
本文可以作为学习使用Transformer 模型的时间序列预测的一个起点。
使用mergekit 合并大型语言模型
在本文中我们将介绍各种合并算法,研究如何实现它们,并深入研究它们的工作原理。还将使用mergekit工具合并Mistral、WizardMath和CodeLlama模型。
Mistral AI vs. Meta:顶级开源LLM比较
本文将比较Mistral 7B vs Llama 2 7B and Mixtral 8x7B vs Llama 2 70B
通过4个任务比较LangChain和LlamaIndex
LlamaIndex和LangChain是构建LLM应用程序的两个框架。LlamaIndex专注于RAG用例,LangChain得到了更广泛的应用。
Vision Mamba:将Mamba应用于计算机视觉任务的新模型
Mamba是LLM的一种新架构,与Transformers等传统模型相比,它能够更有效地处理长序列。就像VIT一样现在已经有人将他应用到了计算机视觉领域
针对特定领域较小的语言模型是否与较大的模型同样有效?
作者全面分析了微调大语言模型(llm)及其在金融情绪分析中的零样本和少样本的能力。
RAG中的3个高级检索技巧
本文将探讨三种有效的技术来增强基于rag的应用程序中的文档检索,通过结合这些技术,可以检索与用户查询密切匹配的更相关的文档,从而生成更好的答案。
4种通过LLM进行文本知识图谱的构建方法对比介绍
本文将介绍和比较使用LLM转换非结构化文本的四种方法,这些方法在不同的场景中都可能会用到。
使用SPIN技术对LLM进行自我博弈微调训练
SPIN从AlphaGo Zero和AlphaZero等游戏中成功的自我对弈机制中汲取灵感。它能够使LLM参与自我游戏的能力。
Tokenization 指南:字节对编码,WordPiece等方法Python代码详解
计算机要处理语言,首先需要将文本转换成数字形式。这个过程由一个称为标记化 Tokenization。
提高代码效率的6个Python内存优化技巧
有许多方法可以显著优化Python程序的内存使用,这些方法可能在实际应用中并没有人注意,所以本文将重点介绍Python的内置机制,掌握它们将大大提高Python编程技能。