sMLP:稀疏全mlp进行高效语言建模
论文提出了sMLP,通过设计确定性路由和部分预测来解决下游任务方面的问题。
神经网络中的量化与蒸馏
本文将深入研究深度学习中精简模型的技术:量化和蒸馏
无监督学习的集成方法:相似性矩阵的聚类
在机器学习中,术语Ensemble指的是并行组合多个模型,这个想法是利用群体的智慧,在给出的最终答案上形成更好的共识。
XoT:一种新的大语言模型的提示技术
这是微软在11月最新发布的一篇论文,它增强了像GPT-3和GPT-4这样的大型语言模型(llm)解决复杂问题的潜力。
LoRAShear:微软在LLM修剪和知识恢复方面的最新研究
LoRAShear是微软为优化语言模型模型(llm)和保存知识而开发的一种新方法。它可以进行结构性修剪,减少计算需求并提高效率。
线性回归,核技巧和线性核
在这篇文章中,我想展示一个有趣的结果:线性回归与无正则化的线性核ridge回归是等 价的。
使用递归图 recurrence plot 表征时间序列
在本文中,我将展示如何使用递归图 Recurrence Plots 来描述不同类型的时间序列。
使用Streamlit创建AutoGen用户界面
我们来对AutoGen进行改造,使用Streamlit创建一个web界面,这样可以让我们更好的与其交互。
使用Python从零实现多分类SVM
本文将首先简要概述支持向量机及其训练和推理方程,然后将其转换为代码以开发支持向量机模型。之后然后将其扩展成多分类的场景,并通过使用Sci-kit Learn测试我们的模型来结束。
使用蒙特卡罗模拟的投资组合优化
在金融市场中,优化投资组合对于实现风险与回报之间的预期平衡至关重要。蒙特卡罗模拟提供了一个强大的工具来评估不同的资产配置策略及其在不确定市场条件下的潜在结果。
Spectron: 谷歌的新模型将语音识别与语言模型结合进行端到端的训练
Spectron是谷歌Research和Verily AI开发的新的模型。与传统的语言模型不同,Spectron直接处理频谱图作为输入和输出。该模型消除归纳偏差,增强表征保真度,提高音频生成质量。
使用LIME解释各种机器学习模型代码示例
在本文中,我们将介绍LIME,并使用它来解释各种常见的模型。
10月发布的5篇人工智能论文推荐
10月发布的5篇人工智能论文推荐
数据抽样技术全面概述
抽样是研究和数据收集中不可或缺的方法,能够从更大数据中获得有意义的见解并做出明智的决定的子集。不同的研究领域采用了不同的抽样技术,每种技术都有其独特的优点和局限性。
AutoGen完整教程和加载本地LLM示例
Autogen是一个卓越的人工智能系统,它可以创建多个人工智能代理,这些代理能够协作完成任务,包括自动生成代码,并有效地执行任务。
使用Llama index构建多代理 RAG
检索增强生成(RAG)已成为增强大型语言模型(LLM)能力的一种强大技术。通过从知识来源中检索相关信息并将其纳入提示,RAG为LLM提供了有用的上下文,以产生基于事实的输出。
使用Panda-Gym的机器臂模拟进行Deep Q-learning强化学习
强化学习(RL)是一种机器学习方法,它允许代理通过试错来学习如何在环境中表现。行为主体因采取行动导致预期结果而获得奖励,因采取行动导致预期结果而受到惩罚。随着时间的推移,代理学会采取行动,使其预期回报最大化。
使用FastAPI部署Ultralytics YOLOv5模型
在本文中,我们将介绍如何使用FastAPI的集成YOLOv5,这样我们可以将YOLOv5做为API对外提供服务。
Python时间序列分析库介绍:statsmodels、tslearn、tssearch、tsfresh
在本文中,我们将介绍四个主要的Python库——statmodels、tslearn、tssearch和tsfresh——每个库都针对时间序列分析的不同方面进行了定制
TimeGPT:时间序列预测的第一个基础模型
在本文中,我们将探索TimeGPT背后的体系结构以及如何训练模型。然后,我们将其应用于预测项目中,以评估其与其他最先进的方法(如N-BEATS, N-HiTS和PatchTST)的性能。