论文导读:Universal Adversarial Training

在这篇论文中,作者提出了一种优化的方法来找到给定模型的通用对抗样本(首先在 Moosavi-Desfooli 等人 [1] 中引入)。作者还提出了一种低成本算法来增强模型对此类扰动的鲁棒性。

深度学习主干网络-VGG16论文网络实现,参数介绍,数据处理,单通道,多通道数据,最大池化可视化。带源码。

深度学习主干网络-VGG16论文网络实现,参数介绍,数据处理,单通道,多通道数据,最大池化可视化。带源码。

5分钟NLP:使用 HuggingFace 微调BERT 并使用 TensorBoard 可视化

上篇文章我们已经介绍了Hugging Face的主要类,在本文中将介绍如何使用Hugging Face进行BERT的微调进行评论的分类。

AlexNet论文解读与代码实现

1. 论文解读1.1 泛读1.1.1 标题与作者1.1.2 摘要1.1.3 结论(讨论)1.1.4 重要图1.1.5 重要表1.2 精读1.2.1 文章精解1.2.1.1 ReLU1.2.1.2 Local Response Normalization(局部响应归一化)1.2.1.3 降低过拟合1.

论文导读:CoAtNet是如何完美结合 CNN 和 Transformer的

这篇文章主要介绍 Z. Dai 等人的论文 CoAtNet: Marrying Convolution and Attention for All Data Sizes。(2021 年)。

手把手教你用numpy搭建一个单隐层神经网络

在阅读本文之前,请确保你已经有了一定的神经网络基础。目录一、理论部分1.1 正向计算1.2 反向传播一、理论部分1.1 正向计算符号说明\textcolor{red}{符号说明}符号说明设我们的单隐层BP神经网络有 mmm 个输入神经元,nnn 个输出神经元,hhh 个隐层神经元。权重: 第 iii

人工智能实践Tensorflow2.0 第五章--1.卷积神经网络基础--八股法搭建卷积神经网络--北京大学慕课

第五章–卷积神经网络基础–八股法搭建卷积神经网络本讲目标:  介绍神经网络基本概念,用八股法实现卷积神经网络(以cifar10为例,本节建立的框架作为后续网络的baseline,在baseline中修改实现其他网络)。参考视频。卷积神经网络基础0.回顾全连接神经网络1.卷积计算过程1.1-卷积概念1

论文解释:SeFa ,在潜在空间中为 GAN 寻找语义向量

SeFa — Closed-Form Factorization of Latent Semantics in GANs

5分钟 NLP :Hugging Face 主要类和函数介绍 🤗

主要包括Pipeline, Datasets, Metrics, and AutoClasses

【宝藏工具系列】神经网络可视化工具集合啦,秒级画出漂亮的神经网络图~

宝藏工具系列,强烈建议收藏备用!!!

轻量级神经网络——shuffleNet

文章目录轻量级神经网络——shuffleNetshuffleNet1逐点分组卷积(Pointwise group convolution)✨✨✨通道重排(channel shuffle)✨✨✨shuffleNet Unit✨✨✨shuffleNet1的网络结果和效果轻量级神经网络——shuffleN

神经网络中的激活函数与损失函数&深入理解推导softmax交叉熵

介绍神经网络中常用的激活函数和损失函数,主要是介绍softmax交叉熵损失函数,并使用计算图手动推导softmax交叉熵反向传播过程。

论文推荐:StarCraft II Unplugged 离线强化学习

在本文中,我们将介绍 StarCarft II Unplugged 论文 [1],本论文可以将AlphaStar进行了扩展或者说更好的补充解释,绝对值得详细阅读。

论文回顾:U2-Net,由U-Net组成的U-Net

在这篇文章中,我们将介绍2020年发布的一种称为 U²-Net 或 U-squared Net 的 U-net 变体。U²-Net基本上是由U-Net组成的U-Net。

详细且通俗讲解轻量级神经网络——MobileNets【V1、V2、V3】

文章目录轻量级神经网络——MobileNetsMobileNetV1深度可分离卷积1、**深度卷积**✨✨✨2、**逐点卷积**✨✨✨参数量和计算量1、**标准卷积**2、**深度可分离卷积**✨✨✨MobileNetV1的网络结构及效果MobileNetV2Linear Bottlenecks✨✨

可视化深度学习模型架构的6个常用的方法总结

可视化有助于解释和理解深度学习模型的内部结构。本文将使用 Keras 和 PyTorch 构建一个简单的深度学习模型,然后使用不同的工具和技术可视化其架构。

混合密度网络(MDN)进行多元回归详解和代码示例

在本文中,首先简要解释一下 混合密度网络 MDN (Mixture Density Network)是什么,然后将使用Python 代码构建 MDN 模型,最后使用构建好的模型进行多元回归并测试效果。

基于BP神经网络使用开盘价、最高价、最低价预测收盘价

以下是本文所用数据~~~一、直接上手撸代码import pandas as pdimport numpy as npimport mathdata = pd.read_excel('上证指数.xls')data = np.array(data.iloc[3:-1,1:])e = 1ita = 0.0

EfficientNetV2 - 通过NAS、Scaling和Fused-MBConv获得更小的模型和更快的训练

EfficientNetV2是由 Google Research,Brain Team发布在2021 ICML的一篇论文,比EfficientNetV1的训练速度快得多,同时体积小 6.8 倍。

5分钟NLP:从 Bag of Words 到 Transformer 的时间年表总结

本文对影响NLP研究的一些重要的模型进行总结,并尽量让它简约而不是简单,如果你刚刚进入NLP领域,本文可以作为深入研究该领域的起点。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈