清华大学出品:罚梯度范数提高深度学习模型泛化性
论文方法L(θ)=LS(θ)+λ⋅∥∇θLS(θ)∥pL(\theta)=L_{\mathcal{S}}(\theta)+\lambda \cdot \|\nabla_\theta L_{\mathcal{S}}(\theta)\|_pL(θ)=LS(θ)+λ⋅∥∇θLS(θ)∥p∥h(θ1
DeepFaceDrawing: 使用草图生成人脸图像
在本文中,介绍了使用人脸设计或草图来制作人脸照片的想法。该技术的应用包括角色设计、教育培训、面部变形和嫌疑人画像等。
使用OpenCV对运动员的姿势进行检测
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达如今,体育运动的热潮日益流行。同样,以不正确的方式进行运动的风险也在增加。有时可能会导致严重的伤害。考虑到这些原因,提...
b站的用纸笔训练神经网络【matlab与python实现】
b站的用纸笔训练神经网络【matlab与python实现】我的工作基本思路黑盒是什么MATLAB源码Python源码我的工作之前在b站上看到小蛮大佬做的一期用纸笔训练神经网络的视频【BV1R64y187yt】,关于正向传递和反向传播这一块受益匪浅,但是视频中也存在一些公式以及绘图错误的地方,所以尝试
Darknet CUDA/CUDANN环境的快速安装
在具备GPU显卡且主持CUDA的纯净的UBUNTU18.04系统上,按照如下指导文档安装 Nvidia 显卡驱动。Ubuntu18.04安装CUDA深度学习环境_tugouxp的专栏-CSDN博客之后,下载darknetgit clone https://github.com/AlexeyAB/da
卷积自编码器中注意机制和使用线性模型进行超参数分析
本文通过一个简单的代码实例介绍了卷积的注意力机制和何如使用线性模型进行超参数的分析
论文推荐-使用 Noisy Student 进行自训练可以提高 ImageNet 分类的表现
使用 Noisy Student 进行自训练改进 ImageNet 分类是一篇由 Google Research、Brain Team 和Carnegie Mellon大学发表在2020 CVPR的论文
深度学习入门之神经网络
接着啃书第三章
图卷积和消息传递理论的可视化详解
本文中将研究如何基于消息传递机制构建图卷积神经网络,并创建一个模型来对具有嵌入可视化的分子进行分类。
伪标签:用于深度神经网络的简单高效的半监督学习方法
未标记的数据由监督学习网络标记,即所谓的伪标记。然后使用标记数据和伪标记数据训练网络。
通过强化学习和官方API制作《星露谷物语》的自动钓鱼mod
使用官方 Stardew Valley 的 modding API 用 C# 编写一个自动钓鱼的mod
为神经网络选择正确的激活函数
在本篇文章中我们将讨论神经网络中常见的激活函数,并使用可视化技术帮助你了解激活函数的函数定义和不同的使用场景。
神经网络-人脸表情识别
导 论 :Hello 各位小伙伴,今天给大家带来零基础入门深度学习第一个小项目—情绪识别。本订阅号作为科普类的公众号,目的就是科普人工智能,无论什么专业只需要掌握了高中数学基础与简单编程就能入门人工智能。好了,接下来开始我们今天的第一个小项目—计算机视觉之情绪检测。本小项目是非常经典的,会了这个项目
深入了解 TabNet :架构详解和分类代码实现
Google发布的TabNet是一种针对于表格数据的神经网络,它通过类似于加性模型的顺序注意力机制(sequential attention mechanism)实现了instance-wise的特征选择,还通过encoder-decoder框架实现了自监督学习。
论文推荐:在早期训练阶段预测下游模型性能
22年1月的新论文提出了基于边缘动态系统的神经网络选择的新视角
2022 年 1 月推荐阅读的四篇深度学习论文
自举元学习到深度学习的时间序列预测,外推与泛化之间的关系与 Ridge Rider 探索多样化最优