【FPGA】基于HLS的全连接神经网络手写体识别
一 系统分析1.1 全连接神经网络简介 二 通过HLS 编写全连接神经网络传入权重参数和偏置参数文件2.1 获得图片、权重以及偏置的参数2.2 编写C语言的全连接算子2.3 Slave Interfaces2.3.1 hls_avalon_slave_component 2.3.2 hls_ava
Paper Reading - 综述系列 - Hyper-Parameter Optimization(上)
自开发深度神经网络以来,几乎在日常生活的每个方面都给人类提供了比较理性的建议。但是,尽管取得了这一成就,神经网络的设计和训练仍然是具有很大挑战性和不可解释性,同时众多的超参数也着实让人头痛,因此被认为是在炼丹。因此为了降低普通用户的技术门槛,自动超参数优化(HPO)已成为学术界和工业领域的热门话题。
深度学习:根据 loss曲线,对模型调参
深度学习模型调参笔记train loss 下降,val loss下降,说明网络仍在学习; 奈斯,继续训练train loss 下降,val loss上升,说明网络开始过拟合了;赶紧停止,然后数据增强、正则train loss 不变,val loss不变,说明学习遇到瓶颈;调小学习率或批量数目trai
主动学习(Active Learning,AL)的理解以及代码流程讲解
针对有监督的学习任务,存在标记成本较为昂贵且标记难以大量获取的问题。 在此问题背景下,主动学习(Active Learning, AL)尝试通过选择性的标记较少数据而训练出表现较好的模型。主动学习的工作流程的关键是选择模型、使用的不确定性度量以及应用于请求标签的查询策略。主要步骤为:收集数据、建立模
神经网络算法基本原理及其实现
目录背景知识人工神经元模型激活函数网络结构工作状态学习方式BP算法原理算法实现(MATLAB)背景知识在我们人体内的神经元的基本结构,相信大家并不陌生,看完下面这张图,相信大家都能懂什么是人工神经网络?人工神经网络是具有适应性的简单神经元组成的广泛并互连的网络,它的组织能够模拟生物神经系统对真实世界
Pytorch:全连接神经网络-MLP回归
使用全连接神经网络(MLP)解决波士顿房价回归预测问题
PyTorch学习系列教程:何为Tensor?
导读本文继续PyTorch学习系列教程,来介绍在深度学习中最为基础也最为关键的数据结构——Tensor。一方面,Tensor之于PyTorch就好比是array之于Numpy或者DataF...
【7】SCI易中期刊推荐——计算机 | 人工智能(中科院4区)
SCI即《科学引文索引》是1961年由美国科学信息研究所创办的文献检索工具。在我国,SCI不仅是一部权威的文献检索工具,更是评价个人&团队科研学术水平及优秀创新成果的一种重要依据。
BartModel 源码解析
BartModel的代码真的有太多的坑了
通过公式和源码解析 DETR 中的损失函数 & 匈牙利算法(二分图匹配)
DETR在单次通过解码器时推断一个固定大小的有N个预测的集合,其中N被设置为显著大于图像中典型的物体数量。所有真实框中的每一个框和所有预测框进行匹配,损失值最小的预测框为该真实框的最佳匹配框,当所有真实框遍历完毕后,得到所有唯一匹配的框。完成最优分配,假设有六位老师和六种课程,通过匈牙利算法进行匹配
知识蒸馏算法和代码(Pytorch)笔记分享,一个必须要了解的算法
知识蒸馏算法和代码(Pytorch)笔记分享,一个必须要了解的算法
深度学习理论篇之 ( 十八) -- 注意力机制之SENet
科普知识ILSVRC(ImageNet Large Scale Visual Recognition Challenge)是机器视觉领域最受追捧也是最具权威的学术竞赛之一,代表了图像领域的最高水平。ImageNet数据集是ILSVRC竞赛使用的是数据集,由斯坦福大学李飞飞教授主导,包含了超过1400
经典神经网络论文超详细解读(一)——AlexNet学习笔记(翻译+精读)
AlexNet(ImageNet Classification with Deep Convolutional Neural Networks)论文超详细解读。翻译+总结
Yolov5--从模块解析到网络结构修改(添加注意力机制)
文章目录1.模块解析(common.py)01. Focus模块02. CONV模块03.Bottleneck模块:04.C3模块05.SPP模块2.为yolov5添加CBAM注意力机制最近在进行yolov5的二次开发,软件开发完毕后才想着对框架进行一些整理和进一步学习,以下将记录一些我的学习记录。
【神经网络】(10) Resnet18、34 残差网络复现,附python完整代码
各位同学好,今天和大家分享一下 TensorFlow 深度学习中如何搭载 Resnet18 和 Resnet34 残差神经网络,残差网络利用 shotcut 的方法成功解决了网络退化的问题,在训练集和校验集上,都证明了的更深的网络错误率越小。论文中给出的具体的网络结构如下:Resnet50 网络结构
【YOLO系列】YOLOv5、YOLOX、YOOv6、YOLOv7网络模型结构
YOLOv5、YOLOX、YOLOv6、YOLOv7模型结构图
深度残差网络(ResNet)之ResNet34的实现和个人浅见
残差网络是由来自Microsoft Research的4位学者提出的卷积神经网络,在2015年的ImageNet大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge, ILSVRC)中获得了图像分类和物体识别的优胜。 **残差网络的特
深度学习之wandb的基本使用
在深度学习训练网络的过程中,由于网络训练过程时间长,不可能一直关注训练中的每一轮结果,因此我们需要将训练过程中的结果可视化,留作后续的查看,从而确定训练过程是否出错。因此,我们需要使用到可视化工具,常用的几种可视化工具有:`wandb`(在线可视化)、`tensorboard`、这里主要介绍`wan
全网最全极限学习机(ELM)及其变种的开源代码分享
愿之称为全网最全的开源极限学习机(ELM)及其变种的开源代码分享~
stable diffusion 2.0本地部署和微调
今天我们来围绕着AUTOMATIC1111的stable-diffusion-webui介绍如何将stable diffusion 2.0 部署到本地,还有在哪里下载基本模型和微调。