物理信息神经网络PINNs : Physics Informed Neural Networks 详解
本博客主要分为两部分:1、PINN模型论文解读2、PINN模型相关总结一、PINN模型论文解读1、摘要:基于物理信息的神经网络(Physics-informed Neural Network, 简称PINN),是一类用于解决有监督学习任务的神经网络,同时尊重由一般非线性偏微分方程描述的任何给定的物理
BP神经网络python代码详细解答(来自原文)
翻译如下 ** &#160; &#160; &#160; &#160; <font color=black size=6.5> 在 SCRATCH采用pyt...
PyTorch中的可视化工具
本文主要介绍Pytorch中的一些可视化工具
DNN(全连接神经网络)
一.DNN网络一般拥有三层1.输入层2.隐藏层3.输出层简单网络如下:二.正向传播从第二层开始,每一个神经元都会获得它上一层所有神经元的结果。即每一个 y = wx + b的值。具体分析如下:如此下去就会非常可能出现了一个问题------就是越靠后的神经元获得的y值会非常大,试想一下,如果这个数远远
【周末闲谈】AI的旅途
忙碌的一周终于快要过去了,本周就让我们来谈谈AI这个热点话题吧😉(ps:但愿下个星期会更加轻松)AI无论在那个时代都是人们津津乐道的话题,人们即担心其的发展终有一天会取代人类,又好奇它能够成长到何种地步,今天就让我们来谈谈AI的发展史吧。
【ROS】VSCODE + ROS 配置方法(保姆级教程,总结了多篇)
vscode + ros 配置方法(正在更新……)最近开始学习ROS,但是官方给的教程都是在终端命令行下实现的,如果想要编写代码我使用的是vscode进行编写。首先vscode它不是一个IDE,vscode只提供编辑的环境而不提供编译的环境,如果想要用vscode来集成开发环境,就必须安装必须的编译
可视化CNN和特征图
卷积神经网络(cnn)是一种神经网络,通常用于图像分类、目标检测和其他计算机视觉任务。CNN的关键组件之一是特征图,它是通过对图像应用卷积滤波器生成的输入图像的表示。
SeAFusion:首个结合高级视觉任务的图像融合框架
在SeAFusion发表之前,关于图像融合的研究一直在魔改网络,设计loss function, 调整学习范式中徘徊,SeAFusion给与了我们新的启发,即联系高级视觉任务来研究图像融合。尽管SeAFusion的方法设计还比较简单,但是这也给了我们更多的优化空间。此外之前感觉大家觉得红外和可见光图
人工智能学习——神经网络(matlab+python实现)
神经网络文章目录神经网络前言一、神经网络理论知识二、matlab实现神经网络1.引入库2.读入数据三、python实现神经网络1.引入库总结前言此文章仅作为个人学习笔记使用,主要介绍理论以及学习过程,仅供参考!一、神经网络理论知识示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据
超分之EDSR
这篇文章是SRResnet的升级版——EDSR,其对网络结构进行了优化(去除了BN层),省下来的空间可以用于提升模型的size来增强表现力。此外,作者提出了一种基于EDSR且适用于多缩放尺度的超分结构——MDSR。EDSR在2017年赢得了NTIRE2017超分辨率挑战赛的冠军。参考目录:①深度学习
yolov7开源代码讲解--训练代码
以前看CNN训练代码的时候,往往代码比较易懂,基本很快就能知道各个模块功能,但到了后面很多出来的网络中,由于加入了大量的trick,导致很多人看不懂代码,代码下载以后无从下手。训练参数和利用yaml定义网络详细过程可以看我另外的文章,都有写清楚。其实不管什么网络,训练部分大体都分几个部分:1.网络的
首次,第五轮学科评估结果不公开
据教育部学位中心负责人当时介绍,第五轮学科评估强调,评价教师不唯学历和职称,不设置人才“帽子”指标,避免以学术头衔评价学术水平的片面做法。评估自2002年首次开展,平均4年一轮,至今已完成四轮。在上述干部职工大会上,教育部党组成员、副部长郑富芝在讲话中提到,“第五轮学科评估已顺利完成,要稳妥做好结果
一文详解Transformers的性能优化的8种方法
前言自BERT出现以来,nlp领域已经进入了大模型的时代,大模型虽然效果好,但是毕竟不是人人都有着丰富的GPU资源,在训练时往往就捉襟见肘,出现显存out of memory的问题,或者训练时间非常非常的久,因此,这篇文章主要解决的问题就是如何在GPU资源受限的情况下训练transformers库上
CPU、GPU、NPU的区别
CPU、GPU、NPU的区别
最全神经网络基础知识讲解
神经网络是所有 AI 算法的核心,如今,深度神经网络用于从图像识别和对象检测到自然语言处理和生成的各种任务。在剖析了构成神经网络的基本构建块及其工作原理之后,本问将深入研究神经架构类型及其各自的用途、神经网络芯片和模型优化技术。介绍 计算单元(也称为神经元)的大规模互连包括一个神经网络,它是所有
【深度学习】(1) CNN中的注意力机制(SE、ECA、CBAM),附Pytorch完整代码
大家好,今天和各位分享一下如何使用 Pytorch 构建卷积神经网络中的各种注意力机制,如:SENet,ECANet,CBAM。注意力机制的原理 和 TensorFlow2 的实现方式可以看我下面两篇博文:SENet、ECANet:https://blog.csdn.net/dgvv4/articl
深度解析预训练权重的本质和作用:你真的了解它们吗?
为了训练自定义模型,通常需要使用大量标注好的图像数据来训练模型。但是,当可用的训练数据不够多时,可以使用预训练权重来提高模型的性能。
神经网络数据增强transforms的相关操作(持续更新)
transforms的相关操作(Pytorch)一、图像的相关变化1、格式转换(1)transforms.ToTensor()(2)transforms.ToPILImage()1、图像大小(1)一、图像的相关变化1、格式转换(1)transforms.ToTensor()可将PIL格式、数组格式转
Hugging face预训练模型下载和使用
Hugging face预训练模型下载和使用
基于python实现的生成对抗网络GAN
基于python实现的生成对抗网络GAN