ChainForge:衡量Prompt性能和模型稳健性的GUI工具包

ChainForge是一个用于构建评估逻辑来衡量模型选择,提示模板和执行生成过程的GUI工具包。ChainForge可以安装在本地,也可以从chrome浏览器运行。

用于数据增强的十个Python库

在本文中,我们将介绍数据增强的十个Python库,并为每个库提供代码片段和解释。

16,8和4位浮点数是如何工作的

在本文中,我们将介绍最流行的浮点格式,创建一个简单的神经网络,并了解它是如何工作的。

使用ExLlamaV2在消费级GPU上运行Llama2 70B

在本文中,我将展示如何使用ExLlamaV2以混合精度量化模型。我们将看到如何将Llama 2 70b量化到低于3位的平均精度。

LongLoRA:不需要大量计算资源的情况下增强了预训练语言模型的上下文能力

麻省理工学院和香港中文大学推出了LongLoRA,这是一种革命性的微调方法,可以在不需要大量计算资源的情况下提高大量预训练语言模型的上下文能力。

处理不平衡数据的十大Python库

在本文中,我们将介绍用于处理机器学习中不平衡数据的十大Python库,并为每个库提供代码片段和解释。

使用高斯混合模型拆分多模态分布

本文介绍如何使用高斯混合模型将一维多模态分布拆分为多个分布。

9月人工智能论文和项目推荐

因为LLM的火爆,所以最近的论文都是和LLM相关的

EfficientFormer:高效低延迟的Vision Transformers

我们都知道Transformers相对于CNN的架构效率并不高,这导致在一些边缘设备进行推理时延迟会很高,所以这次介绍的论文EfficientFormer号称在准确率不降低的同时可以达到MobileNet的推理速度。

基于对数谱图的深度学习心音分类

这是一篇很有意思的论文,他基于心音信号的对数谱图,提出了两种心率音分类模型,我们都知道:频谱图在语音识别上是广泛应用的,这篇论文将心音信号作为语音信号处理,并且得到了很好的效果。

快速找到离群值的三种方法

本文将介绍3个在数据集中查找离群值的Python方法

在Python中创建相关系数矩阵的6种方法

相关系数矩阵(Correlation matrix)是数据分析的基本工具。它们让我们了解不同的变量是如何相互关联的。在Python中,有很多个方法可以计算相关系数矩阵,今天我们来对这些方法进行一个总结

使用QLoRA对Llama 2进行微调的详细笔记

本文是一个良好的开端,因为可以把我们在这里学到的大部分东西应用到微调任何LLM的任务中。

ChatGPT可以取代搜索引擎吗?

ChatGPT对于一些简单的问题,可以完美的完成任务。但是我让它写一篇完整的文章,看看它能否代替我进行写作地的时候,我确定它不能完全取代人类。

时间序列的重采样和pandas的resample方法介绍

重采样是时间序列分析中处理时序数据的一项基本技术。它是关于将时间序列数据从一个频率转换到另一个频率,它可以更改数据的时间间隔,通过上采样增加粒度,或通过下采样减少粒度。

Stability AI发布基于稳定扩散的音频生成模型Stable Audio

近日Stability AI推出了一款名为Stable Audio的尖端生成模型,该模型可以根据用户提供的文本提示来创建音乐。

图注意网络(GAT)的可视化实现详解

能够可视化的查看对于理解图神经网络(gnn)越来越重要,所以在这篇文章中,我将介绍传统GNN层的实现,然后展示ICLR论文“图注意力网络”中对传统GNN层的改进。

Python中进行特征重要性分析的9个常用方法

特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。

Recognize Anything:一个强大的图像标记模型

Recognize Anything是一种新的图像标记基础模型,与传统模型不同,它不依赖于手动注释进行训练;相反,它利用大规模的图像-文本对

向量数据库简介和5个常用的开源项目介绍

本文旨在全面介绍向量数据库,并介绍2023年可用的最佳向量数据库。

个人信息

加入时间:2020-01-23

最后活动:12 小时前

发帖数:1801

回复数:1