Jupyter Notebook的10个常用扩展介绍

在本文中,我们将探索Jupyter Notebook提升我们数据科学经验的强大扩展组件。

【智能优化算法】人工免疫算法 (Immune Algorithm, IA), 1986

遗传算法的思想简单讲就是父代之间通过交叉互换以及变异产生子代,不断更新适应度更高的子代,从而达到优化的效果。而免疫算法本质上其实也是更新亲和度(这里对应上面的适应度)的过程,抽取一个抗原(问题),取一个抗体(解)去解决,并计算其亲和度,而后选择样本进行变换操作(免疫处理),借此得到得分更高的解样本,

神经网络中的分位数回归和分位数损失

在分位数回归中,我们不仅关注预测的中心趋势(如均值),还关注在分布的不同分位数处的预测准确性。Quantile loss允许我们根据所关注的分位数来量化预测的不确定性。

交叉验证的种类和原理(sklearn.model_selection import *)

前提:假设某些数据是独立且相同分布的 (i.i.d.),假设所有样本都源于同一个生成过程,并且假设生成过程没有对过去生成的样本的记忆。注意:虽然i.i.d.数据是机器学习理论中的常见假设,但在实践中很少成立。如果知道样本是使用瞬态过程生成的,则使用时间序列感知交叉验证方案会更安全(例一)。同样,如果

亚马逊云科技AI应用 SageMaker 新突破,机器学习优势显著

Amazon SageMaker是一种机器学习服务,帮助开发人员快速准备、构建、训练和部署高质量的机器学习模型。本文主要讲解了SageMaker的五项新功能,并使用Sagemaker部署模型并进行推理,最后对数据处理。新功能给SageMaker的使用带来极大的便利,期待未来有更多的创新应用。

【数据挖掘大作业】基于决策树的评教指标筛选(weka+数据+报告+操作步骤)

数据挖掘大作业一、考核内容现有某高校评教数据(pjsj.xls),共计842门课程,属性包括:课程名称、评价人数、总平均分以及10个评价指标Index1-Index10。指标内容详见表1。表1 学生评教指标体系及权重序 号指 标权重(10%)Index1老师在第一节课能向我们介绍本课程的基

Python到机器学习再到深度学习:一条完整的人工智能学习之路

Python到机器学习再到深度学习:一条完整的人工智能学习之路

计算机毕业设计:基于python机器学习的全国气象数据采集预测可视化系统 预测模型+爬虫(包含文档+源码+部署教程)

计算机毕业设计:基于python机器学习的全国气象数据采集预测可视化系统 预测模型+爬虫(包含文档+源码+部署教程)

《神经网络与深度学习》算法伪代码汇总

《神经网络与深度学习》算法伪代码

推荐算法架构7:特征工程(吊打面试官,史上最全!)

本文先讲解特征类目体系,分析推荐系统中一般会有哪些特征。然后讲解特征处理范式,分析如何对特征进行离散化、归一化、池化和缺失值填充等处理。最后讲解特征重要性评估,从而提升特征可解释性,并对其进行筛选,以及进一步挖掘更多高质量特征。

数据对象属性分类

月份、日期、一天的时间描述(早上、上午、中午、下午、晚上、夜里),调查问卷的反馈(十分满意、比较满意、满意、一般、不满意、比较不满意、十分不满意),还有军衔、职级等等。从理论上讲,不论什么測量标度类型(标称的、序数的、区间的和比率的)都能够与基于属性值个数的随意类型(二元的、离散的和连续的)组合。此

人工智能计算机视觉:解析现状与未来趋势

人工智能计算机视觉的发展,如同一场精彩的科技盛宴,我们期待着更多创新的涌现,为未来的智能化世界贡献更多可能性。在迎接未知的同时,让我们保持对技术的敬畏之心,引导着它走向更加美好的未来。计算机视觉是人工智能的一个重要分支,其目标是使机器具备类似于人类视觉的能力。计算机视觉的不断发展不仅改变着我们对技术

一文读懂分类模型评估指标

模型评估是深度学习和机器学习中非常重要的一部分,用于衡量模型的性能和效果。本文将逐步分解混淆矩阵,准确性,精度,召回率和F1分数。

Azure Machine Learning - Azure OpenAI GPT 3.5 Turbo 微调教程

本教程将引导你在Azure平台完成对 `gpt-35-turbo-0613` 模型的微调。

Spark Machine Learning进行数据挖掘的简单应用(兴趣预测问题)

使用SparkSession中的builder()构建 后续设定appName 和master ,最后使用getOrCreate()完成构建// 定义spark对象val spark = SparkSession.builder().appName("兴趣预测").master("local[*]"

处理不平衡数据的过采样技术对比总结

在不平衡数据上训练的分类算法往往导致预测质量差。过采样提供了一种在模型训练开始之前重新平衡类的方法。

EDA中常用的9个可视化图表介绍和代码示例

在这篇文章中我们介绍EDA中常用的9个图表,并且针对每个图表给出代码示例。

深度学习基础实例与总结

感知机(Perceptron),又称神经元(Neuron,对生物神经元进行了模仿)是神经网络(深度学习)的起源管法,1958年由康奈尔大学心理学教授弗兰克·罗森布拉特(Frank Rosenblatt) 提出,它可以接收多个输入信号,产生一个输出信号。其中,x1ix_1ix1​i和x2x_2x2​称

【机器学习】主成分分析(PCA)算法及Matlab实现

PCA即主成分分析,是用一个超平面对所有样本进行恰当表达的方法,思想是将n维特征映射到k维上(k

人工智能、机器学习、深度学习之间的关系是什么?

人工智能(Artificial Intelligence,AI)是指通过计算机技术来实现人类的智能行为和智能思维的一种技术手段。它的传统研究方向是从人类的智能角度出发,通过模拟和实现人类的智能能力,比如语言理解、图像识别、推理、决策等。而机器学习则是人工智能的一个重要分支,是指计算机通过学习数据和样

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈