0


机器学习实战3:基于朴素贝叶斯实现单词拼写修正器(附Python代码)

目录

0 写在前面

机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。

🚀详情:机器学习强基计划(附几十种经典模型源码合集)


在机器学习强基计划4-3:详解朴素贝叶斯分类原理(附例题+Python实现)中我们学习了朴素贝叶斯的概念:采用属性独立性假设对类后验概率建模,本节再次使用这个理论实现一个有趣的应用——单词拼写修正器,并梳理一些朴素贝叶斯原理中的细节,以期固本强基。


本文转载自: https://blog.csdn.net/FRIGIDWINTER/article/details/127177936
版权归原作者 Mr.Winter` 所有, 如有侵权,请联系我们删除。

“机器学习实战3:基于朴素贝叶斯实现单词拼写修正器(附Python代码)”的评论:

还没有评论