机器学习中的数学原理——过拟合、正则化与惩罚函数

通过这篇博客,你将清晰的明白什么是过拟合、正则化、惩罚函数。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《 白话机器学习中的数学——过拟合、正则化与惩罚函数》

用chatgpt写insar地质灾害的论文,重复率只有1.8%,chatgpt4.0写论文不是梦

例如,长江三峡地区位于构造活跃带,地震活动频繁,同时地区地质构造多样,加之大规模水库建设和人类活动等因素,导致了地下水位变化、土体物理力学性质变化等,加剧了地质灾害的风险。近年来,多个地区的科学家们使用InSAR技术监测了不同规模的地面沉降,如华北平原、广东沿海、长江三角洲等地,以实现对地质灾害的实

机器学习:基于主成分分析(PCA)对数据降维

主成分分析算法(Principal Component Analysis, PCA)的目的是找到能用较少信息描述数据集的特征组合。它意在发现彼此之间没有相关性、能够描述数据集的特征,确切说这些特征的方差跟整体方差没有多大差距,这样的特征也被称为主成分。这也就意味着,借助这种方法,就能通过更少的特征捕

AI绘画进军三次元,有人用它打造赛博女友?(diffusion)

AI绘画大模型从学术界走入公众视野,对此你怎么看?欢迎大家体验

高斯混合模型 GMM 的详细解释

高斯混合模型(后面本文中将使用他的缩写 GMM)听起来很复杂,其实他的工作原理和 KMeans 非常相似,你甚至可以认为它是 KMeans 的概率版本。 这种概率特征使 GMM 可以应用于 KMeans 无法解决的许多复杂问题。

机器学习:基于KNN对葡萄酒质量进行分类

KNN对葡萄酒质量进行分类。该数据集采集于葡萄牙北部“Vinho Verde”葡萄酒,由于隐私和物流问题,只有理化变量特征是可以进行使用的(例如,数据集中没有关于葡萄品种、葡萄酒品牌、葡萄酒销售价格等的数据)。本篇notebook使用了红葡萄酒质量的数据集,并用KNN进行分类模型的训练。

30行python代码就可以调用ChatGPT API总结论文的主要内容

使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。

使用树状图可视化聚类

这篇文章中,我们介绍如何使用树状图(Dendrograms)对我们的聚类结果进行可视化。

10个Pandas的另类数据处理技巧

本文所整理的技巧与以前整理过10个Pandas的常用技巧不同,你可能并不会经常的使用它,但是有时候当你遇到一些非常棘手的问题时,这些技巧可以帮你快速解决一些不常见的问题。

分段模型线性化(PWL)【Python|Gurobi实现】

在许多问题中,可能既包含着纯线性函数,也包含着分段线性函数。在这一节,我们使用运输问题解释处理分段线性模型的各种方法。从几何的观点,下图为一个经典的分段线性函数。这个函数由四条线段构成,分段点为4、5 和 7。这三个分段点,将整个函数分为(-∞, 4) 、 [4, 5) 、 [5, 7) 和 [7,

堪称经典,一个非常适合初学者的机器学习实战案例

哈喽,大家好。今天给大家介绍一个非常适合新手入门的机器学习实战案例。这是一个房价预测的案例,来源于 Kaggle 网站,是很多算法初学者的第一道竞赛题目。该案例有着解机器学习问题的完整流程,包含EDA、特征工程、模型训练、模型融合等。房价预测流程下面跟着我,来学习一下该案例。没有啰嗦的文字,没有多余

darknet训练yolov7-tiny(AlexeyAB版本)

darknet训练yolov7-tiny目标检测网络

【毕业设计】基于机器学习与大数据的糖尿病预测

本项目以体检数据集为样本进行了机器学习的预测,但是需要注意几个问题:体检数据量太少,仅有1006条可分析数据,这对于糖尿病预测来说是远远不足的,所分析的结果代表性不强。这里的数据糖尿病和正常人基本相当,而真实的数据具有很强的不平衡性。也就是说,糖尿病患者要远少于正常人,这种不平衡的数据集给真实情况下

多模态多目标优化文献分享

多模态的意思是,解的形态是多样的。比如我们可以说,从长沙到北京可以找到两条长度完全一致的路,这种情况在现实世界中是经常存在的。那么推广到多目标的情况也是一样的。

Hi-C数据可视化-组装角度

Hi-C数据可视化-组装角度这里讨论HiC的可视化是从组装角度出发,也就是如何展示contig和contig之间的关系Hi-C数据可视化(我所知)有下面几个Juicerbox: 可视化图形工具,需要.hic作为输入。HiTC: R包工具HiCPlotter: Python工具HiCExplorer:

Stable Diffusion原理详解

本文向大家介绍了图像生成领域最前沿的Stable Diffusion模型。本质上Stable Diffusion属于潜在扩散模型(Latent Diffusion Model)。潜在扩散模型在生成细节丰富的不同背景的高分辨率图像方面非常稳健,同时还保留了图像的语义结构。 因此,潜在扩散模型是图像生成

【TensorFlow2.0】(1) tensor数据类型,类型转换

各位同学好,今天和大家分享一下TensorFlow2.0中的tensor数据类型,以及各种类型之间的相互转换方法。1. tf.tensor 基础操作scaler标量:1.2vector向量:[1.2]、[1.1,2.2,3.3] 注意:此处的[1.2]是一维的,而1.2是0维的matrix矩阵:

DDPG强化学习的PyTorch代码实现和逐步讲解

深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)是受Deep Q-Network启发的无模型、非策略深度强化算法,是基于使用策略梯度的Actor-Critic,本文将使用pytorch对其进行完整的实现和讲解

AI风暴 :文心一言 VS GPT-4

AI风暴 :文心一言 VS GPT-4

Python判断字符串是否全是数字或者字母

一、判断为数字str.isnumeric()ReturnTrueif all characters in the string are numeric characters, and there is at least one character,Falseotherwise. Numeric ch

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈