AI风暴 :文心一言 VS GPT-4
AI风暴 :文心一言 VS GPT-4
Python判断字符串是否全是数字或者字母
一、判断为数字str.isnumeric()ReturnTrueif all characters in the string are numeric characters, and there is at least one character,Falseotherwise. Numeric ch

Pandas 2.0 简单介绍和速度评测
最近 Pandas 2.0 的RC版已经最近发布了。这个版本主要包括bug修复、性能改进和增加Apache Arrow后端。当涉及到使用DF时,Arrow比Numpy提供了更多的优势。
代理模型介绍大全
代理模型通常是指在优化设计中可替代比较复杂和费时的数值分析的近似数学模型,也可称为响应面模型或者是近似模型,比如飞行器的优化设计,就是典型的复杂和费时。此外在做优化设计时,难免会碰见一些难以用直观的函数表达式去表达目标函数,这时也可用代理模型来替代目标函数。使用代理模型可以极大的提高优化设计效率以及
yolov5 训练结果解析
yolov5 训练结果解析在每次训练之后,都会在runs-train文件夹下出现一下文件,如下图:一:weights包含best.pt(做detect时用这个)和last.pt(最后一次训练模型)二:confusion1:混淆矩阵:①:混淆矩阵是对分类问题的预测结果的总结。使用计数值汇总正确和不正确
脑电EEG代码开源分享 【4.特征提取-时域篇】
特征提取作为承上启下的重要阶段,承上,紧接预处理结果和可视化分析,对庞大的原始数据进行凝练,用少量维度指标表征整体数据特点;启下,这些代表性、凝练性的特征指标量化了数据性能,为后续的认知解码、状态监测、神经调控等现实需求提供参考。本文特征主要为手动设置的经验特征,大多源于脑科学及认知科学的机制结论,
机器学习:基于逻辑回归对优惠券使用情况预测分析
逻辑回归模型虽然名字中有回归两字,其本质却是分类模型。分类模型与回归模型的区别在于其预测的变量不是连续的,而是离散的一些类别,以最常见的二分类模型为例,分类模型可以预测一个人是否会违约、客户是否会流失、肿瘤是属于良性肿瘤还是恶性肿瘤等
clip预训练模型综述
CLIP是一个预训练模型,就像BERT、GPT、ViT等预训练模型一样。首先使用大量无标签数据训练这些模型,然后训练好的模型就能实现,输入一段文本(或者一张图像),输出文本(图像)的向量表示。CLIP和BERT、GPT、ViT的区别在于,CLIP是多模态的,包含图像处理以及文本处理两个方面内容,而B
ABB机器人RobotStudio编程指令大全
程序的调用ProcCall调用例行程序CallByVar经过带变量的例行程序名称调用例行程序RETURN返回原例行程序例行程序内的逻辑控制CompactIF假如条件知足,就履行一条指令IF当知足不一样的条件时,履行对应的程序FOR依据指定的次数,重复履行对应的程序WHILE假如条件知足,重复履行对应
yolov5网络结构代码解读
yolov5已经很成熟了,作为一个拥有发展系列的检测器,它拥有足够的精度和满足现实中实时性要求,所以许多项目和比赛都能用的上,自己也拿来参加过比赛。YOLOv5针对不同大小的输入和网络深度宽度,主要分成了(n, s, m, l, x)和(n6, s6, m6, l6, x6),这些都在yolov5的
2023年3月的10篇论文推荐
本文整理的是本月应该阅读的10篇论文,将包括多模态语言模型、扩散模型、机器翻译等主题。
在Ubuntu20.04系统上LIO-SAM跑KITTI数据集和自己数据集代码修改
LIO-SAM跑KITTI数据集和自己数据集代码修改参考文献参考文献1、ubuntu18运行编译LIO-SAM并用官网和自己的数据建图(修改汇总)2、LIO-SAM运行自己数据包遇到的问题解决–SLAM不学无数术小问题3、使用开源激光SLAM方案LIO-SAM运行KITTI数据集,如有用,请评论雷锋
【机器学习】9种回归算法及实例总结,建议学习收藏
我相信很多人跟我一样,学习机器学习和数据科学的第一个算法是线性回归,它简单易懂。由于其功能有限,它不太可能成为工作中的最佳选择。大多数情况下,线性回归被用作基线模型来评估和比较研究中的新方法。在处理实际问题时,你应该了解并尝试许多其他回归算法。一方面可以系统学习回归算法,另外一方面在面试中也常用到这
Python_sklearn_CountVectorizer使用详解
Python,sklearn,CountVectorizer,文本提取,计数矩阵,toarray
人工智能前沿知识
人工智能(Artificial Intelligence, AI)是指通过模拟、延伸和扩展人类智能的理论、方法、技术和应用系统,使机器能够感知环境、理解自然语言、分析数据、学习知识、做出决策和行动,从而实现智能化的机器系统。通常包括知识表示、推理与规划、机器学习、计算机视觉、自然语言处理、智能控制、

GPT-4 和ChatGPT API的定价分析
OpenAI发布了他们的ChatGPT新机器学习模型GPT-4。GPT-4是GPT-3的一大进步,GPT-3是当前ChatGPT免费版本(GPT 3.5 Turbo)所运行的模型的基础,今天我们也来凑个热点,研究一下它们的定价

处理缺失值的三个层级的方法总结
缺失值是现实数据集中的常见问题,处理缺失值是数据预处理的关键步骤。本文将展示如何使用三种不同级别的方法处理这些缺失值
机器学习:朴素贝叶斯模型算法原理(含实战案例)
朴素贝叶斯模型是一种非常经典的机器学习模型,它主要基于贝叶斯公式,在应用过程中会把数据集中的特征看成是相互独立的,而不需考虑特征间的关联关系,因此运算速度较快。相比于其他经典的机器学习模型,朴素贝叶斯模型的泛化能力稍弱,不过当样本及特征的数量增加时,其预测效果也是不错的。

SDG,ADAM,LookAhead,Lion等优化器的对比介绍
本文将介绍了最先进的深度学习优化方法,帮助神经网络训练得更快,表现得更好。有很多个不同形式的优化器,这里我们只找最基础、最常用、最有效和最新的来介绍。
图片的美白与美化
前面介绍了如何提取图像中的各种特征,包括颜色特征,几何特征、局部特征等,也进行了各种特征算法学习。那么本节我们来学习美化图片。众所周知,现在各大平台惊现“照骗”,修图技术的发展,让越来越多的人迷失在幻境中,男的批成女的,等等。对于我们计算机专业的学生来说,理解这些功能的底层代码是非常重要的。