编码器-解码器架构

编码器-解码器架构

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

这是一篇23年发布的新论文,论文提出了一种更深、更紧凑的分裂注意力的U-Net,该网络基于主特征守恒和紧凑分裂注意力模块,有效地利用了底层和高层语义信息。

1DCNN原理详解

一维卷积神经网络(1DCNN)前向计算原理详解

yolov7开源代码讲解--训练代码

以前看CNN训练代码的时候,往往代码比较易懂,基本很快就能知道各个模块功能,但到了后面很多出来的网络中,由于加入了大量的trick,导致很多人看不懂代码,代码下载以后无从下手。训练参数和利用yaml定义网络详细过程可以看我另外的文章,都有写清楚。其实不管什么网络,训练部分大体都分几个部分:1.网络的

超参数调优框架optuna(可配合pytorch)

全自动超参数调优框架——optuna

YOLOv5改进之添加注意力机制

本文主要给大家讲解一下,如何在yolov5中添加注意力机制,这里提供SE通道注意力的改进方法,其他注意力的添加方法,大同小异首先找到SE注意力机制的pytorch代码class SELayer(nn.Module): def __init__(self, c1, r=16): s

【深度学习经典网络架构—8】:注意力机制之SE_Block

😺一、引言类似于人脑的注意力感知,那卷积神经网络能否也能产生注意力效果呢?答案是:**可以!****SE_Block是SENet的子结构**,作者将SE_Block用于ResNeXt中,并在ILSVRC 2017大赛中拿到了分类任务的第一名,在ImageNet数据集上将top-5 error降低到

pycharm运行yolov5-v5.0 (深度学习yolov5-篇二)

pycharm 运行yolov5-v5.0

详解准确率acc、精确率p、准确率acc、F1 score

准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 Score

GPT-4——比GPT-3强100倍

ChatGPT的地位可能即将被自家的GPT-4超越。

一文详解 ChatGPT:背后的技术,数据,未来发展

LM有基于大量训练数据的天然的迁移学习能力,但要在新域上获得较好的性能,使用Fine-tuning,就要求重新多次训练预训练模型,导致吃内存。ChatGPT 的卓越表现得益于其背后多项核心算法的支持和配合,包括作为其实现基础的 Transformer 模型、激发出其所蕴含知识的 Prompt/Ins

【深度学习笔记】特征融合concat和add的区别

在网络模型当中,经常要进行不同通道特征图的信息融合相加操作,以整合不同通道的信息,在具体实现方面特征的融合方式一共有两种,一种是 ResNet 和 FPN 等当中采用的 element-wise add ,另一种是 DenseNet 等中采用的 concat。add相当于加了一种prior,当两路输

GPT视角学习:spring注解『文末赠书:提供免费国内GPT链接』

GPT视角学习:spring注解『文末赠书:评论区提供免费稳定国内GPT链接』

Stable Diffusion复现——基于 Amazon SageMaker 搭建文本生成图像模型

众所周知,Stable Diffusion扩散模型的训练和推理非常消耗显卡资源,我之前也是因为资源原因一直没有复现成功。 而最近我在网上搜索发现,亚马逊云科技最近推出了一个【云上探索实验室】刚好有复现Stable Diffusion的活动,其使用亚马逊AWS提供的Amazon SageMake

pytorch 笔记:torch.distributions 概率分布相关(更新中)

1 包介绍torch.distributions包包含可参数化的概率分布和采样函数。 这允许构建用于优化的随机计算图和随机梯度估计器。不可能通过随机样本直接反向传播。 但是,有两种主要方法可以创建可以反向传播的代理函数。这些是评分函数估计量 score function estimato 似然比估计

深度强化学习DRL训练指南和现存问题(D3QN(Dueling Double DQN))

深度强化学习DRL现存问题和训练指南(D3QN(Dueling Double DQN))

Pytorch深度学习实战3-8:详解数据可视化组件TensorBoard安装与使用

在深度学习领域,人工调试极其困难。Tensorboard则是神经网络的可视化工具,可以记录训练过程的数字、图像、运行图等,观察神经网络训练过程并指导参数优化。

CPU、GPU、NPU的区别

CPU、GPU、NPU的区别

Amazon SageMaker简直就是机器学习平台的天花板

最近参与了亚马逊云科技【云上探索实验】活动,通过Amazon SageMaker基于Stable Diffusion模型,非常简单快速搭建的第一个AIGC,一开始以为非常复杂,不懂动手操作,但实际上操作非常简单,没有想象中的恐怖,整体体验非常愉快,我先对Amazon SageMaker简单介绍,然后

Stable Diffusion教学 使用Lora制作AI网红 【AI绘画真人教程】

Stable Diffusion教学 使用Lora制作AI网红【AI绘画】一键启动/修复/更新/模型下载管理全支持!

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈