【C++进阶】2024年了set、map还搞不懂底层细节?
关联式容器也是用来存储数据的,与序列式容器不同的是,关联式容器里面存的是结构的键值对,在数据检索时比序列式容器效率更高。set:存储唯一键的集合multiset:存储可以有重复键的集合map:存储唯一键及其关联值的映射multimap:存储可以有重复键及其关联值的映射特点:内部以红黑树实现,元素默认
《AI系统:原理与架构》于华为HC大会2024正式发布
(ZOMI 酱, 苏统华编著. 北京 : 科学出版社, 2024. 9)主要围绕AI 系统的理论基础与技术基础知识展开,结合实例进行介绍,旨在让读者了解AI 系统的来龙去脉,形成对AI 系统的系统化与层次化的初步理解,掌握AI 系统基本理论、技术、实际应用及研究方向,为后续从事具体的学习研究工作和项
用GPT打造一个专门写网文小说的AI智能体!轻松掌控故事发展
它可以根据你提供的输入(prompt)生成符合逻辑的内容,而训练一个AI智能体就是定制和优化这个能力,使其更符合你的个人需求,比如专门为你撰写某种风格或类型的网文小说。通过训练,你可以让AI根据指定的角色、剧情线、写作风格等,自动生成大量文本,极大地提升写作效率,同时还可以为你提供不同的灵感。你可以
深度解析机器学习的四大核心功能:分类、回归、聚类与降维
在当今数据驱动的时代,机器学习已经成为推动科技进步和商业创新的重要力量。无论是在金融、医疗、交通还是社交媒体等领域,机器学习都在不断改变着我们的生活方式和工作模式。然而,面对如此广泛的应用,许多人可能会感到困惑,不知从何入手。机器学习的核心功能主要包括分类、回归、聚类和降维。这些功能不仅是机器学习的
11种经典时间序列预测方法:理论、Python实现与应用
本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
金融信用评分卡建模项目:AI辅助
(Weight of Evidence)转换是一种将分类变量的每个类别映射到一个连续的数值的方法,这个数值反映了该类别相对于参考类别(通常是目标事件发生率最低的类别)对目标事件发生概率的影响强度。这是此项目唯一的亮点和创新性,将llm融入评分卡建模的过程,目前市场上是不多见的。这是评分卡建模最后一
AI在医学领域:医学AI的安全与隐私全面概述
本文通过系统化地检查医疗应用领域并为未来的攻击研究奠定基础,提供一个医疗领域AI攻击研究的全面视角。
一颗改变视觉AI领域的重磅炸弹——YOLO 11
Ultralytics在2024年YOLO Vision活动上隆重推出全新计算机视觉模型——YOLO 11。YOLO 11于今日正式开源,为广大开发者带来更高效、更精准的视觉识别体验。YOLO 11标志着YOLO系列模型翻开新的篇章,它带来了一系列强大的功能和优化,使其更快,更准确,并且功能多样。
戎易大数据 | 数据分析实操篇:基于MySQL和Tableau的淘宝用户购物行为数据分析
为提高平台GMV和实现精细化运营,本项目首先使用MySQL(实际上是用Navicat Premium连接了MySQL,方便数据导入)对来自某电商的数据集进行数据预处理,然后通过多维度拆解,从用户和商品两个大的角度分别进行分析,最后借助Tableau搭建仪表盘实现数据可视化。
【AI知识点】交叉注意力机制(Cross-Attention Mechanism)
交叉注意力机制(Cross-Attention Mechanism) 是一种在深度学习中广泛使用的技术,尤其在序列到序列(sequence-to-sequence)模型和Transformer 模型中被大量应用。它主要用于不同输入之间的信息交互,使模型能够有效地将来自不同来源的上下文进行对齐和关注,
【Python机器学习】Logistic回归——从疝气病症预测病马的死亡率
数据中的缺失值是个非常棘手的问题
sheng的学习笔记-AI-归纳逻辑程序设计(ILP)
归纳逻辑程序设计采用自底向上的规则生成策略,直接将一个或多个正例所对应的具体事实(grounded fact)作为初始规则,再对规则逐步进行泛化以增加其对样例的覆盖率。泛化操作可以是将规则中的常量替换为逻辑变量,也可以是删除规则体中的某个文字。为简便起见,暂且假定“更好(X,Y)”仅决定于(X,Y)
基于AFM注意因子分解机的推荐算法
引入注意力机制:在传统因子分解机(FM)的基础上,AFM通过加入注意力机制,能够更好地识别和分配特征交互的重要性。模型会为不同的特征交互分配动态的权重,识别用户与商品或内容之间的深层关系,从而使得推荐系统能够根据用户的不同偏好进行更精准的推荐。这种方式比传统的FM模型更具表现力,能够捕捉复杂的用户行
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的两个基本概念,它们揭示了现象在空间和时间维度上的相互依赖关系。
【AI知识点】残差网络(ResNet,Residual Networks)
残差网络(ResNet,Residual Networks) 是由微软研究院的何凯明等人在 2015 年提出的一种深度神经网络架构,在深度学习领域取得了巨大的成功。它通过引入残差连接(Residual Connection) 解决了深层神经网络中的梯度消失(Vanishing Gradient) 问
智能工厂的设计软件 中的AI操作系统的“三维时间”(历时/共时/等时)构建的“能力成熟度-时间规模”平面
三套设计 “三维度时间”的维度【数】/“三向度空间”的向度量【量】和“双深度时空值”的【值】分别为 程序的三种变点 (程序横切点(表面构造类Class的 切点)/程序竖分点( 内建类型Type的埋点)/程序纵插点(外创方法Method的插点))给出了它们全部的 符号学意义(符号学本身的sign 意义
机器学习|Pytorch实现天气预测
训练过程可视化:通过损失曲线和准确率曲线展示模型的训练效果。可以展示每个epoch的训练和验证损失、准确率的变化趋势,帮助判断模型是否收敛或过拟合。
【AI大模型】深入Transformer架构:解码器部分的实现与解析
由N个解码器层堆叠而成每个解码器层由三个子层连接结构组成第一个子层连接结构包括一个多头自注意力子层和规范化层以及一个残差连接第二个子层连接结构包括一个多头注意力子层和规范化层以及一个残差连接第三个子层连接结构包括一个前馈全连接子层和规范化层以及一个残差连接说明:解码器层中的各个部分,如,多头注意力机
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。
Ubuntu20.04 安装 CUDA 12.1
在Ubuntu20.04上安装CUDA,它是NVIDIA公司开发的一种并行计算平台和编程模型。