深入理解命名实体识别(NER)

命名实体识别(NER,Named Entity Recognition)是自然语言处理(NLP)中的一项重要技术,用于从文本中识别出特定类型的实体,并将这些实体分类到预定义的类别中。实体通常包括人名、地名、组织名、日期、时间、数量、货币等。例如,在句子“Barack Obama was born i

【AI知识点】置信区间(Confidence Interval)

置信区间(Confidence Interval, CI) 是统计学中用于估计总体参数的范围。它给出了一个区间,并且这个区间包含总体参数的概率等于某个指定的置信水平(通常是 90%、95% 或 99%)。与点估计不同,置信区间通过区间估计给出了参数的可能范围,从而提供了更可靠的信息。

【机器学习】机器学习与成像技术:开启智能视觉的新篇章

在科技日新月异的今天,机器学习与成像技术的融合正引领着一场前所未有的智能视觉革命。随着大数据的蓬勃发展和计算能力的显著提升,机器学习不再仅仅是学术界的研究热点,它正逐步渗透到我们生活的每一个角落,特别是在成像技术领域展现出了巨大的潜力和价值。

Ollama+Open WebUI+AUTOMATIC1111实现LLM+SD生成图片

本篇我们主要介绍如何在open webui中调用automatic1111的api来。

【SARL】单智能体强化学习(Single-Agent Reinforcement Learning)《纲要》

强化学习(Reinforcement Learning,简称 RL)是一种让机器“通过尝试和错误学习”的方法。它模拟了人类和动物通过经验积累来学会做决策的过程,目的是让机器或智能体能够在复杂的环境中选择最优的行为,从而获得最大的奖励。我们在这里介绍了单智能体强化学习的相关算法。

【海洋生态环境】十大数据集合集,速看!

MARIDA (Marine Debris Archive) 是第一个基于多光谱 Sentinel-2 (S2) 卫星数据的数据集,它将海洋碎片与共存的各种海洋特征区分开来,包括马尾藻大型藻类、船舶、天然有机材料、波浪、尾流、泡沫、不同的水类型(即清澈、浑浊的水、富含沉积物的水、浅水)和云。带注释的

机器学习ID3构造决策树

决策树是一种。

聚类分析算法——层次聚类 详解

层次聚类(Hierarchical Clustering)是一种无监督的机器学习方法,通过递归地对数据进行合并(或拆分),构建一个类似树的聚类结构,称为“树状图”(Dendrogram)。该算法通常用于探索数据的层次结构。根据聚类方向的不同,层次聚类可以分为“自底向上”(凝聚式聚类)和“自顶向下”(

【机器学习】决策树与随机森林:模型对比与应用案例分析

决策树是一种树状结构的模型,用于解决分类和回归问题。模型通过递归地将数据集分割成更小的子集,最终到达叶子节点,每个叶子节点表示一个预测结果。决策树的每个节点代表对某个特征的测试,每个分支代表测试结果,而每个叶子节点则表示最终的预测类别或值。随机森林是一种集成学习方法,通过构建多个决策树并结合它们的预

分布式机器学习系统:设计原理、优化策略与实践经验

分布式机器学习系统仍在快速发展。随着新型硬件的出现和算法的进步,我们预期会看到更多创新的优化技术。

机器学习之特征提取

自编码器就像是一个神奇的魔术师,它能将复杂的数据压缩成简洁的低维表示,同时还能从这个压缩后的表示中重构出原始数据。想象一下,把一堆杂乱无章的东西塞进一个小盒子里,然后还能再把它们完好无损地取出来,这就是自编码器的魅力所在。

【人工智能】Transformers之Pipeline(二十七):蒙版生成(mask-generation)

本文对transformers之pipeline的蒙版生成(mask-generation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用多模态中的蒙版生成(mask-generation)模型。

【pyspark学习从入门到精通20】机器学习库_3

在这一部分,我们将使用前一章中的数据集的一部分来介绍 PySpark ML 的概念。在这一部分,我们将再次尝试预测婴儿的生存几率。

可解释人工智能(XAI)领域的全面概述

本文提供一份关于 XAI 的全面综述,涵盖常见的术语和定义、XAI 的需求、XAI 的受益者、XAI 方法分类以及 XAI 方法在不同应用领域的应用。

AI前景分析展望——GPTo1 SoraAI

人工智能(AI)领域的飞速发展已不仅仅局限于学术研究,它已渗透到各个行业,影响着从生产制造到创意产业的方方面面。在这场技术革新的浪潮中,一些领先的AI模型,像Sora和OpenAI的O1,凭借其强大的处理能力和创新的技术架构,成为了当前最为关注的焦点。本文将对这两款模型进行深入剖析,探讨它们在技术架

从本地部署到企业级服务:十种主流LLM推理框架的技术介绍与对比

本文将深入探讨十种主流LLM服务引擎和工具,系统分析它们在不同应用场景下的技术特点和优势。

手搓人工智能-最优化算法(1)最速梯度下降法,及推导过程

对于复杂函数来说,直接求解矢量方程得到优化函数的极值点往往非常困难。在这种情况下,可以考虑采用迭代的方法从某个初始值开始,逐渐逼近极值点,即——梯度法

基于特征子空间的高维异常检测:一种高效且可解释的方法

本文将重点探讨一种替代传统单一检测器的方法:不是采用单一检测器分析数据集的所有特征,而是构建多个专注于特征子集(即*子空间*)的检测器系统。

掌声响起来——不确定性人工智能与高斯云方法的应用

“掌声响起来”软件正是针对这一问题而设计的。它利用不确定性人工智能的理论,结合高斯云方法,旨在模拟和分析观众在不同情境下的鼓掌行为。掌声不仅是对表演者的认可和赞赏,更是观众情感共鸣的体现。通过对掌声的研究,我们不仅可以更好地理解观众的心理,还可以为活动的组织者提供有价值的反馈,优化活动安排,提高观众

AI Agent(智能体)行专题报告:从技术概念到场景落地

1. 原理解析:思维链铸就智能体,多体交互拓展应用早在上世纪 50 年代,阿兰图灵把“高度智能有机体”扩展到了人工智能。如今随 着大模型的快速发展,这个概念又被重新拾起。大模型成为了智能体目前最完美的载体, 有望完成从概念到实际应用的蜕变。 用户在 Agent(智能体)模式中给 AI 设臵目标和身份

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈