【人工智能】【机器学习】-好书推荐之《Python神经网络编程》
《Python神经网络编程》(原书名:Make Your Own Neural Network)是一本深度学习领域的入门级书籍,由Tariq Rashid撰写。这本书的独特之处在于它从零开始讲解神经网络的基础知识,同时提供了详细的编程实例,让读者能够亲手构建一个简单的神经网络。
PySpark特征工程(I)--数据预处理
有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样是确定的步骤,更多是工程上的经验和权
Vitis AI 进阶认知(量化过程详解)
在当今技术快速发展的时代,我们追求的不仅是智能设备的高性能,同时也强调其能效和便携性。Vitis AI量化器便是在这样的背景下应运而生的一个工具,它通过将神经网络模型的数据精度从32位浮点数降低到8位整数,极大地缩减了模型的体积和计算需求,而通过精心设计的校准和微调过程,又能确保模型的预测准确性基本
动态面板数据实证模型及 Stata 具体操作步骤
研究揭示,劳动者早期的教育投资会在其职业生涯中产生长期的动态影响,不仅影响初次就业选择,还对后续的职业晋升和岗位变动产生持续作用。其研究发现,技术创新的滞后效应在推动经济持续增长中发挥着关键作用,且这种影响在不同发展阶段的国家和地区呈现出显著的差异。研究指出,汇率的短期波动对企业出口决策的影响相对较
稀疏向量查询简介:使用 inference 或预先计算的查询向量搜索稀疏向量
向量搜索正在不断发展,随着我们对向量搜索的需求不断发展,对一致且具有前瞻性的向量搜索 API 的需求也在不断发展。当 Elastic 首次推出语义搜索时,我们使用 text_expansion 查询利用了现有的字段。然后,我们重新引入了sparse_vector 字段类型以用于语义搜索用例。当我们思
【计算机方向】中科院三区,最快1个月accept,还是非OA,速投!
总体来说,此期刊为SCI三区,IF:2.8,自引率较低,根据网友经验来看,最快1个月左右录用,最慢6个月左右录用,有该领域的作者可以投稿试试哦~~~知识工程、人工智能、专家系统、 大数据、自然语言处理、机器视觉、分析、 普适计算、人工智能计算模型、混合计算 智能系统、数据包络分析。物联网对各种物联网
【人工智能】Transformers之Pipeline(十四):问答(question-answering)
本文对transformers之pipeline的问答(question-answering)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的问答(question-answering)模型。

6种有效的时间序列数据特征工程技术(使用Python)
在本文中,我们将探讨使用日期时间列提取有用信息的各种特征工程技术。
逐步掌握最佳Ai Agents框架-AutoGen 九 RAG应用
RAG是LLM的经典应用,AutoGen通过提供chat agent的 rag 升级agent,完成了相应功能。RetrieveUserProxyAgent的配置需要完成文档读取、向量数据库、分词器的配置RetrieveUserProxyAgent的prompt模板预置了QA 内容。Retrieve

PyTorch数据处理:torch.utils.data模块的7个核心函数详解
本文将深入介绍PyTorch中 torch.utils.data 模块的7个核心函数,这些工具可以帮助你更好地管理和操作数据。
【智能时代】的崛起:【人工智能】、【机器学习】与【计算机视觉】的革命
人工智能、机器学习、深度学习及计算机视觉的核心概念与应用,通过理论分析与代码示例展示了这些技术的实际操作和发展趋势。文章探讨了它们在医疗、金融、制造等领域的应用,及未来面临的挑战,为读者提供了全面的技术指南和未来展望。
大模型参数——详细介绍
大模型参数——详细介绍
优化学习管理:Moodle和ONLYOFFICE文档编辑器的完美结合
在当今教育科技飞速发展的时代,学习管理系统(LMS)和高效的文档编辑工具成为教育工作者和学习者必不可少的利器。最近为了工作需要,我选择了ONLYOFFICE 文档(编辑器)作为协作办公工具,主要基于以下三个理由:开源优势:ONLYOFFICE是开源的,这使得它在经济上更具优势,相比其他主流产品更加
智能新时代:探索【人工智能】、【机器学习】与【深度学习】的前沿技术与应用
这篇文章深入探讨了人工智能、机器学习、深度学习、算法和计算机视觉的核心概念,并通过丰富的代码示例展示了这些技术在实际应用中的具体实现。通过理论与实践的结合,读者不仅能够理解这些复杂的技术概念,还能掌握在不同场景下如何有效地应用这些技术,进而为进一步的学习和研究奠定坚实的基础。
【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
本文对transformers之pipeline的填充蒙版(fill-mask)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的填充蒙版(fill-mask)模型。
处理效应模型及 Stata 具体操作步骤
通过倾向得分匹配,找到在这些因素上相似但一组接受治疗,一组未接受治疗的个体进行比较,从而更准确地评估治疗效果。选取实施政策的城市作为处理组,未实施政策的相似城市作为控制组,比较政策实施前后两组城市空气质量的变化差异,以评估政策效果。对于倾向得分匹配,查看匹配质量的统计结果,判断协变量是否在处理组和控
绝区玖--人工智能物料清单 (AI BOM)
从基础数据层到模型训练的复杂性,从部署策略到扩展基础设施,每个元素在人工智能生命周期中都发挥着至关重要的作用。端到端 AI 堆栈:包括数据、模型开发、基础设施、部署和监控层。训练过程:详细说明数据准备、模型选择、超参数调整和优化策略。大规模推理:涵盖优化技术、硬件加速和部署注意事项。微调策略:探索迁
学习率调度器简明教程
在机器学习的背景下,学习率(learning rate)是一个超参数,它决定了优化算法(如梯度下降)在尝试最小化损失函数时进行的步长。现在,让我们继续讨论学习率调度程序。学习率调度器(learning rate scheduler)是一种在训练过程中调整学习率的方法,通常会随着训练的进展而降低学习率
Datawhale X 魔搭 AI夏令营:精读代码,实战进阶
学习如何借助AI来提升我们的自学习能力,从而帮助大家在后面的学习工作中如何从容迎接各种挑战。
第五周:机器学习
继上周学习了贝叶斯基础的理论,本周将朴素贝叶斯和贝叶斯网络运用到实践中去,通过对代码的逐行分析,更加深入理解了贝叶斯。接着前两周提出“训练集达不到最优化”的问题,继续探究了批次、动量、学习率的影响因素。最终得出,小批次的数据集具有更高的精确度;动量可以解决局部最小值的困境;均方差和自适应学习率会使得