深度学习笔记 # Datawhale X 李宏毅苹果书 AI夏令营

从零基础开始深度学习

【Git】上传代码命令至codeup云效管理平台

通过git命令上传本地代码库至阿里的codeup云效管理平台的代码管理模块,使用方便,且比github上传网络环境要求低,超大文件(>100M)的文件也可以批量上传,且上传速度喜人。

如何解决NVIDIA显卡报错:uncorrectable ECC error的问题

线上问题出现的时候,如果国内的百度搜不到解决方案,就试试国际的Google,办法总比困难多。

Optuna发布 4.0 重大更新:多目标TPESampler自动化超参数优化速度提升显著

Optuna这个备受欢迎的超参数优化框架在近期发布了其第四个主要版本。自2018年首次亮相以来,Optuna不断发展,现已成为机器学习领域的重要工具。

Monte Carlo方法解决强化学习问题

本文继续深入探讨蒙特卡罗 (MC)方法。这些方法的特点是能够仅从经验中学习,不需要任何环境模型,这与动态规划(DP)方法形成对比。

【机器学习】CNN在计算机视觉中的应用

本文介绍了CNN在计算机视觉中的几个主要应用,包括图像分类、目标检测、语义分割、实例分割和视频分析等。CNN凭借其强大的特征提取能力和端到端的训练方式,在这些任务中取得了卓越的成绩,推动了计算机视觉领域的快速发展。未来,随着模型架构和训练算法的不断优化,CNN在计算机视觉领域的应用将会更加广泛和深入

【机器学习】探秘图像处理与分类:运用C++结合OpenCV实现智能视觉识别技术

在计算机视觉领域,图像处理与分类是核心任务之一。OpenCV作为一个功能强大的开源计算机视觉库,提供了丰富的API支持多种语言的开发,其中C++因其性能优势而被广泛使用,下面我们就来看一下,如何使用C++结合OpenCV进行图像处理与分类,包括安装步骤、基础图像操作以及使用Bag of Words

【机器学习】周志华《机器学习》西瓜书勘误:按章节排序整理(截至2024年1月第45次印刷)

本文整理了机器学习领域经典之作:南京大学周志华教授的《机器学习》(西瓜书)勘误。包含博主按章节排序整理(截至2024年1月第45次印刷)及原印刷排序两部分。

AI:272-【机器学习算法】从线性到多维:多元线性回归算法的深度解析与应用实践

多元线性回归(Multiple Linear Regression)是机器学习中最基本且广泛应用的算法之一。尽管它简单易懂,但在实际应用中仍然能解决许多复杂的问题。本篇文章将从零开始,逐步深入地讲解多元线性回归算法的原理,并通过Python代码实例帮助你理解和实现这一算法。

人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器

在机器学习和模式识别领域,评估样本间的相似性是一项基本而关键的任务。余弦相似度损失(Cosine Similarity Loss)作为一种衡量向量间相似度的损失函数,在深度学习中被广泛用于相似性度量问题。本文将详细介绍余弦相似度损失的背景、计算方法、使用场景、代码实现及总结。**余弦相似度是两个向量

时间序列结构变化分析:Python实现时间序列变化点检测

在时间序列分析和预测中,准确检测结构变化至关重要。

深入理解变分图自编码器(VGAE):原理、特点、作用及实现

图神经网络(Graph Neural Networks, GNNs)在处理图结构数据方面展现出强大的能力。其中,变分图自编码器(Variational Graph Auto-Encoder, VGAE)是一种无监督学习模型,广泛用于图嵌入和图聚类任务。本文将深入探讨VGAE的原理、特点、作用及其具体

图特征工程实践指南:从节点中心性到全局拓扑的多尺度特征提取

本文将介绍如何利用NetworkX在不同层面(节点、边和整体图)提取重要的图特征。

透明性和解释性AI:概念与应用

透明性AI指的是AI系统的操作过程、决策机制、数据流动和模型行为是可理解和可追踪的。换句话说,透明性AI使得人们可以清楚地看到AI系统是如何做出决策的,这一过程包括输入数据的处理方式、模型的内部计算过程、以及最终决策的产生机制。解释性AI是指AI系统不仅能够给出决策结果,还能够提供关于该决策如何产生

机器学习/人工智能中的学习证明

在进行任何数学发展之前,我们必须首先了解学习的基础以及它如何与错误的概念密切相关。关于代价函数,它的工作原理是梯度下降原理。本文将回顾梯度下降原理。

【数值模拟】参数化基本概念和参数化建模

介绍了参数化的概念,举例介绍了参数化建模流程,归纳了机器学习模型在参数化建模中的应用

Nat Med·UNI:开启计算病理学新篇章的自监督基础模型|顶刊精析·24-07-31

一作&通讯角色姓名单位(中文)第一作者哈佛医学院布里格姆和妇女医院病理科第一作者Tong Ding哈佛医学院工程与应用科学学院第一作者Ming Y. Lu哈佛医学院和麻省理工学院癌症项目通讯作者哈佛医学院布里格姆和妇女医院病理科这篇文章介绍了一个名为UNI的新型通用自监督模型,它在计算病理学领域通过

Optuna发布 4.0 重大更新:多目标TPESampler自动化超参数优化速度提升显著

Optuna这个备受欢迎的超参数优化框架在近期发布了其第四个主要版本。

监督学习、无监督学习、半监督学习、弱监督学习、强化学习 和 主动学习

弱监督学习通常指的是训练数据的标签质量不完全可靠,可能是不准确的、噪声较多的或是不完全的。例如,利用搜索引擎的结果为图像自动标注标签,这些标签可能不完全准确。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈