机器学习强基计划0-2:什么是机器学习?和AI有什么关系?
用最通俗的例子和语言解释什么是机器学习,接着介绍机器学习和人工智能的关系,机器学习的用途以及学习路线
【seaborn】sns.set() 绘图风格设置
从这个set()函数,可以看出,通过它我们可以设置背景色、风格、字型、字体等。我们定义一个函数,这个函数主要是生成100个0到15的变量,然后用这个变量画出6条曲线。那么,问题来了,有人会说,这个set()函数这么多参数,只要改变其中任意一个参数的值,绘图效果就会发生变化,那我们怎么知道哪种搭配是最
ROS从入门到精通9-1:项目实战之智能跟随机器人原理与实现
智能跟随机器人是其中很常见的应用,在各类竞赛、创新项目、开源项目甚至商业项目中都有应用,2022年TI杯C赛题就是跟随机器人的应用,本文讲解智能跟随机器人原理和代码实现
【中国大学生计算机大赛二等奖】智能中医-中e诊简介(一)
中国大学生计算机设计大赛-人工智能赛道二等奖党的十九大以来,我国社会的主要矛盾已经变成了人民日益增长的对美好生活需要与不平衡、不充分发展之间的矛盾。美好生活的一个重要体现就是“健康生 活”,然而随着现代都市生活节奏不断加快,人们很多时候会忽视自己的身体健康。“工作太忙,没时间锻炼”、“应酬太多”,许
R实战 | 限制性立方样条(RCS)
RCS在科学研究中,我们经常构建回归模型来分析自变量和因变量之间的关系。大多数的回归模型有一个重要的假设就是自变量和因变量呈线性关联。当自变量和因变量之间为非线性关系时,可以将连续型变量转化为分类变量,但是分类变量的类别数目以及节点位置的选择一般会带有主观性并且分类变量会损失部分信息;也可以直接拟合
YOLOv3&YOLOv5输出结果说明
本文使用的yolov3和yolov5工程文件均为github上ultralytics基于pytorch的v3和v5代码,其训练集输出结果类型基本一致,主要介绍了其输出结果,本文是一篇学习笔记本文使用的yolov3代码github下载地址:yolov3模型训练具体步骤可查看此篇博客:yolov3模型训
灰色预测模型
python实现灰色预测
【控制】动力学建模简介 --> 牛顿-欧拉 (Newton-Euler) 法和拉格朗日 (Lagrange) 法
牛顿-欧拉方法是最开始使用的动力学建模分析方法,由于牛顿方程描述了平移刚体所受的外力、质量和质心加速度之间的关系,而欧拉方程描述了旋转刚体所受外力矩、角加速度、角速度和惯性张量之间的关系,因此可以使用牛顿-欧拉方程描述刚体的力、惯量和加速度之间的关系,建立刚体的动力学方程。拉格朗日方程是另一种经典的
机器学习笔记 - 什么是高斯混合模型(GMM)?
高斯混合模型 (GMM) 是一种机器学习算法。它们用于根据概率分布将数据分类为不同的类别。高斯混合模型可用于许多不同的领域,包括金融、营销等等!这里要对高斯混合模型进行介绍以及真实世界的示例、它们的作用以及何时应该使用GMM。高斯混合模型 (GMM) 是一个概率概念,用于对真实世界的数据集进行建模。
推荐系统笔记(十):InfoNCE Loss 损失函数
InfoNCELoss是为了将N个样本分到K个类中,K
R实战 | Nomogram(诺莫图/列线图)及其Calibration校准曲线绘制
R实战|Nomogram(诺莫图/列线图)及其Calibration校准曲线绘制Nomogram,中文常称为诺莫图或者列线图。简单的说是将Logistic回归或Cox回归的结果进行可视化呈...
核函数 高斯核函数,线性核函数,多项式核函数
核函数是我们处理数据时使用的一种方式。对于给的一些特征数据我们通过核函数的方式来对其进行处理。我们经常在SVM中提到核函数,就是因为通过核函数来将原本的数据进行各种方式的组合计算,从而从低维数据到高维数据。比如原来数据下样本点1是x向量,样本点2是y向量,我们把它变成e的x+y次方,就到高维中去了。
90+个各种疾病相关医疗数据集
含新冠、传染病、医学图像等
【李宏毅《机器学习》2022】作业1:COVID 19 Cases Prediction (Regression)
文章目录【李宏毅《机器学习》2022】作业1:COVID 19 Cases Prediction (Regression)作业内容1.目标2.任务描述3.数据4.评价指标代码1.下载数据2.导入软件包3.定义公用函数(这一部分不需要修改)4.数据集5.神经网络模型6.特征选择7.训练器8.超参数设置
【深度学习】损失函数详解
损失函数
Colab使用教程(超级详细版)及Colab Pro/Colab Pro+评测
Colab使用教程(超级详细版)及Colab Pro/Colab Pro+评测
GAN网络
GAN网络的初步理解与其LOSS函数的理解。加上对于GAN网络的LOSS优化以及变种条件GAN
yolov5目标检测神经网络——损失函数计算原理
yolov5神经网络的损失函数计算原理
代理模型介绍大全
代理模型通常是指在优化设计中可替代比较复杂和费时的数值分析的近似数学模型,也可称为响应面模型或者是近似模型,比如飞行器的优化设计,就是典型的复杂和费时。此外在做优化设计时,难免会碰见一些难以用直观的函数表达式去表达目标函数,这时也可用代理模型来替代目标函数。使用代理模型可以极大的提高优化设计效率以及
YOLOv5改进之十五:网络轻量化方法深度可分离卷积
前 言:作为当前先进的深度学习目标检测算法YOLOv5,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv5的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效