优化器(Optimizer)(SGD、Momentum、AdaGrad、RMSProp、Adam)
文章目录3.1、传统梯度优化的不足(BGD,SGD,MBGD)3.1.1 一维梯度下降3.1.2 多维梯度下降3.2、动量(Momentum)3.3、AdaGrad算法3.4、RMSProp算法3.5、Adam算法优化器在机器学习、深度学习中往往起着举足轻重的作用,同一个模型,因选择不同的优化器,性
深度学习知识点简单概述【更新中】
人工神经网络(英语:Artificial Neural Network,ANN),简称神经网络(Neural Network,NN)或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型,用于对函数进行估计或近似。ps:和其他机器学习方法一样,神经网络已经被用于
GHostNet网络最通俗易懂的解读【不接受反驳】
如下图所示,是由ResNet-50中的第一个残差块生成的某些中间特征图的可视化。从图中我们可以看出,这里面有很多特征图是具有高度相似性的(在图中分别用不同的颜色示意),换句话说,**就是存在许多的冗余特征图。,即每组的channel数量为1),尽管形式上两者有比较大的差别:分组卷积只进行一次卷积操作
深度学习面试基础--BN层
深度学习中BN层的相关介绍
【GPT4】GPT4 官方报告解读
【GPT-4 】官方[研究进展]、[技术报告]全面解读。综合性能,图像输入,私人定制,事实判断的局限性,风险与应对,模型训练过程,用户政策和价格,API 使用。GPT-4 是 OpenAI 在深度学习领域的最新里程碑。GPT-4 是一个大型多模态模型,可以接受图像和文本输入,发出文本输出。虽然 GP
简单粗暴提升yolov5小目标检测能力
和yolov5最开始做的focus是类似的,对于输入的特征图(长宽为S),从左到右以及从上到下每scale个像素采样一次,假设scale=2,采样方式就和上图一样,经过这样采样的输出长宽就是S/2,最后将采样后的输出进行concatenate,通道数就是scale的平方,即4。左侧是yolov5原始
【跟着ChatGPT学深度学习】ChatGPT带我入门深度学习
跟着ChatGPT学深度学习第一弹,入门深度学习。本次ChatGPT老师共教我三个知识点,分别是深度学习基础、深度学习的学习资源和深度学习需要掌握的技能和知识。最后,ChatGPT老师还贴心地给深度学习新手和老手总结了一些学习建议。
Multi-head Self-attention(多头注意力机制)
Multi-head Self-attention(多头注意力机制)是怎么样的实现过程
slowfast代码实现和论文理解
1、摘要本文提出了用于视频识别的SlowFast网络。我们的模型包括:(1)一条slow pathway,以低帧速率运行,以捕获空间语义;(2)一条fast pathway,以高帧速率运行,以精细的时间分辨率捕获运动。fast pathway可以通过减少通道容量而变得非常轻量,但可以学习有用的时间信
分割网络损失函数总结!交叉熵,Focal loss,Dice,iou,TverskyLoss!
交叉熵损失,Focal loss, Dice, iou, Tverskyloss!
脑电EEG代码开源分享 【6. 分类模型-深度学习篇】
科学家认为目前的深度学习瓶颈需要人脑结构的启发,类脑智能逐渐兴起,人脑智能的感知能力 + 机器智能的高效处理,混合智能在不断探索。分类模型-深度学习篇主要介绍了基础的网络结构框架 ,将深度学习解决脑电领域问题,形成【BCI + AI】的处理框架,为脑机接口的科研开辟了新赛道、新领域。本文介绍了3种经
CLIP论文详解
CLIP算是在跨模态训练无监督中的开创性工作,作者在开头梳理了现在vision上的训练方式,从有监督的训练,到弱监督训练,再到最终的无监督训练。这样训练的好处在于可以避免的有监督的 categorical label的限制,具有zero-shot性质,极大的提升了模型的实用性能。这篇文章中作者提到早
【电子、电气、人工智能、图像处理、红外】EI会议(2023)
2023年EI会议,领域包括图像处理、电子信息、机械、光学、深度学习、计算机视觉等等
经典神经网络论文超详细解读(一)——AlexNet学习笔记(翻译+精读)
AlexNet(ImageNet Classification with Deep Convolutional Neural Networks)论文超详细解读。翻译+总结
Yolov5--从模块解析到网络结构修改(添加注意力机制)
文章目录1.模块解析(common.py)01. Focus模块02. CONV模块03.Bottleneck模块:04.C3模块05.SPP模块2.为yolov5添加CBAM注意力机制最近在进行yolov5的二次开发,软件开发完毕后才想着对框架进行一些整理和进一步学习,以下将记录一些我的学习记录。
pytorch从零开始搭建神经网络
pytorch教程之nn.Sequential类详解——使用Sequential类来自定义顺序连接模型_LoveMIss-Y的博客-CSDN博客_sequential类pytorch教程之nn.Module类详解——使用Module类来自定义模型_LoveMIss-Y的博客-CSDN博客_torch
语义分割之SegFormer分享
今年可以说是分割算法爆发的一年,首先Vit通过引入transform将ADE20K mIOU精度第一次刷到50%,超过了之前HRnet+OCR效果,然后再是Swin屠榜各大视觉任务,在分类,语义分割和实例分割都做到了SOTA,斩获ICCV2021的bset paper,然后Segformer有凭借对
目标检测: 一文读懂 YOLOX
论文:YOLOX: Exceeding YOLO Series in 2021论文链接:https://arxiv.org/pdf/2107.08430.pdf代码链接:https://github.com/Megvii-BaseDetection/YOLOX.文章目录1 为什么提出YOLOX2 Y
【图像处理】图像离散小波变换(Discrete Wavelet Transform)及python代码实现
Motivation看到有论文用到了图像的Haar Discrete Wavelet Transform(HDWT),前面也听老师提到过用小波变换做去噪、超分的文章,于是借着这个机会好好学习一下。直观理解参考知乎上的这篇文章:https://zhuanlan.zhihu.com/p/22450818
深度学习网络各种激活函数 Sigmoid、Tanh、ReLU、Leaky_ReLU、SiLU、Mish
激活函数的目的就是:梯度为0, 无法反向传播,导致参数得不到更新:随着数据的变化,梯度没有明显变化:梯度越来越大,无法收敛梯度消失问题:1、反向传播链路过长,累积后逐渐减小2、数据进入梯度饱和区如何解决:1、选正确激活函数,relu, silu2、BN 归一化数据3、 resnet 较短反向传播路径